
 

Causal Inference:
Measuring the Effect of X on y

c©Austin Nichols
austinnichols@gmail.com

September 28, 2009





List of Figures

1.1 The two predictors education and experience. . . . . . . . . . . . 14
1.2 Partial effects in linear regression. . . . . . . . . . . . . . . . . . 15
1.3 Kernel choices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Local linear regression. . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Logit, probit, and LPM. . . . . . . . . . . . . . . . . . . . . . . . 29
1.6 A biased but consistent estimator honing in on the true effect. . . . 40
1.7 A consistent but high-variance estimator versus a biased but low-

variance estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.8 A bias-variance tradeoff and MSE minimizing choice . . . . . . . 43
1.9 Supply and demand curves observed only at uninformative crossings 51

3.1 A single panel’s contributions to various estimates . . . . . . . . . 73

4.1 Snow’s map of cholera deaths . . . . . . . . . . . . . . . . . . . 85

5.1 A picture for the regression discontinuity design. . . . . . . . . . 106
5.2 An alternative picture for the regression discontinuity design, chang-

ing only unobserved counterfactuals. . . . . . . . . . . . . . . . . 106
5.3 RD voting example . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1 Geometric properties of vectors. . . . . . . . . . . . . . . . . . . 123
A.2 The derivative as the slope of a linear approximation. . . . . . . . 127
A.3 Probabilities of events as areas on a Venn diagram. . . . . . . . . 136
A.4 Histogram (pdf) and distribution function (cdf) of a binomial dis-

tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.1 Simple naming conventions can save you a lot of headache . . . . 153

i



ii LIST OF FIGURES

B.2 Schools and larger lakes in Minnesota, pretending Lake Superior
does not exist and Lake of the Woods exists only so long as it is
in Minnesota. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



Contents

1 Basic Ideas and Methods 1
1.1 Basic statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Confidence Intervals . . . . . . . . . . . . . . . . . . . . 6
1.1.6 Crosstabs . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.9 Comparisons of Means . . . . . . . . . . . . . . . . . . . 9

1.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Example with Two Explanatory Variables . . . . . . . . . 13
1.2.2 Examples with Dummies and Interactions . . . . . . . . . 16
1.2.6 Standard Errors . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.7 Nonlinear Effects in the Linear Model . . . . . . . . . . . 19
1.2.12 Model Diagnostics . . . . . . . . . . . . . . . . . . . . . 24
1.2.13 Local Polynomial Regression . . . . . . . . . . . . . . . 25

1.3 Regression for Limited Dependent Variables . . . . . . . . . . . . 27
1.3.1 Linear Probability Model . . . . . . . . . . . . . . . . . . 27
1.3.2 Probit and Logit and alternatives . . . . . . . . . . . . . . 28
1.3.3 Survival Regression . . . . . . . . . . . . . . . . . . . . 30
1.3.4 Tobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3.5 GLM and Poisson . . . . . . . . . . . . . . . . . . . . . 37

1.4 Properties of Estimators . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.1 Bias and Consistency . . . . . . . . . . . . . . . . . . . . 39
1.4.2 Efficiency and MSE . . . . . . . . . . . . . . . . . . . . 39

1.5 Experiment and Quasi-Experiment . . . . . . . . . . . . . . . . . 44
1.5.1 Design of Experiments . . . . . . . . . . . . . . . . . . . 44
1.5.2 The Fundamental Problem of Causal Inference . . . . . . 46
1.5.3 Internal and External Validity . . . . . . . . . . . . . . . 48

iii



iv CONTENTS

1.5.4 Common Sources of Biased Inference . . . . . . . . . . . 49
1.5.5 Spillover and Heterogeneity of Effects . . . . . . . . . . . 55
1.5.6 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2 Matching and Reweighting Methods 57
2.1 Nearest Neighbor Matching . . . . . . . . . . . . . . . . . . . . . 59
2.2 Propensity score matching . . . . . . . . . . . . . . . . . . . . . 59

2.2.1 Sensitivity Testing . . . . . . . . . . . . . . . . . . . . . 61
2.3 Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.1 Alternative weighting schemes . . . . . . . . . . . . . . . 63
2.3.2 Result of reweighting . . . . . . . . . . . . . . . . . . . . 65
2.3.5 Uses of reweighting . . . . . . . . . . . . . . . . . . . . 68

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Panel Methods 71
3.1 Fixed Effects (FE), First Difference (FD), and Long Difference (LD) 72
3.2 Diff-in-Diff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 More Fixed Effects Models . . . . . . . . . . . . . . . . . . . . . 76
3.4 Random Effects (RE) . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 Measurement Error in Panel Models . . . . . . . . . . . . . . . . 78
3.6 Dynamic Panel Models . . . . . . . . . . . . . . . . . . . . . . . 79
3.7 Nonlinear Panel Models . . . . . . . . . . . . . . . . . . . . . . 80
3.8 Falsification Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.9 Segue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Instrumental Variables Methods 83
4.1 Interpretation of estimated coefficients . . . . . . . . . . . . . . . 86
4.2 IV for Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Forms of IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Finding Excluded Instruments . . . . . . . . . . . . . . . . . . . 91
4.5 Testing Assumptions Required for IV . . . . . . . . . . . . . . . 92

4.5.2 Test IV versus OLS . . . . . . . . . . . . . . . . . . . . . 93
4.5.3 Tests of Endogeneity . . . . . . . . . . . . . . . . . . . . 94
4.5.4 Exclusion Restrictions in IV . . . . . . . . . . . . . . . . 94
4.5.5 Identification and Weak Instruments . . . . . . . . . . . . 95
4.5.8 Functional Form Tests in IV . . . . . . . . . . . . . . . . 98
4.5.9 Standard Errors in IV . . . . . . . . . . . . . . . . . . . . 99
4.5.10 Inference in IV . . . . . . . . . . . . . . . . . . . . . . . 99



CONTENTS v

4.6 Binary variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.7 Panel IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.8 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Regression Discontinuity Methods 105
5.1 Key assumptions and tests . . . . . . . . . . . . . . . . . . . . . 107
5.2 Methodological choices . . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Testing assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Test XT jumps at Z0 . . . . . . . . . . . . . . . . . . . . 109
5.3.2 Test y and XC continuous away from Z0 . . . . . . . . . 111
5.3.3 Test XC continuous around Z0 . . . . . . . . . . . . . . . 112
5.3.4 Test density of Z continuous at cutoff . . . . . . . . . . . 113
5.3.5 Treatment Effect Estimator . . . . . . . . . . . . . . . . . 113

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Concluding Remarks 117

A Some Math Topics 121
A.1 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1.1 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . 122
A.1.2 Geometric interpretation and Rank . . . . . . . . . . . . . 124
A.1.3 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.1.4 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.2.1 Derivatives and Gradients . . . . . . . . . . . . . . . . . 127
A.2.2 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.4 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2.5 Derivatives involving Integrals . . . . . . . . . . . . . . . 132
A.2.6 Optimal Control . . . . . . . . . . . . . . . . . . . . . . 133

A.3 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.3.1 Density and Distribution . . . . . . . . . . . . . . . . . . 137
A.3.2 Mean and Conditional Mean . . . . . . . . . . . . . . . . 138
A.3.3 Variance and Higher Moments . . . . . . . . . . . . . . . 139
A.3.4 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . 140



vi CONTENTS

B Data and Stata 145
B.1 Stata Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.1.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . 146
B.1.2 Updating and Getting Help . . . . . . . . . . . . . . . . . 147
B.1.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.1.4 Stata Files . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.1.5 Recordkeeping: do files and log files . . . . . . . . . . . . 149
B.1.6 File environment commands . . . . . . . . . . . . . . . . 149

B.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.2.1 Annotating the Data . . . . . . . . . . . . . . . . . . . . 154
B.2.2 Seeing the Data . . . . . . . . . . . . . . . . . . . . . . . 154
B.2.3 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . 155
B.2.4 Making new data . . . . . . . . . . . . . . . . . . . . . . 155
B.2.5 Logical Statements and Missing Values . . . . . . . . . . 156
B.2.6 System variables . . . . . . . . . . . . . . . . . . . . . . 157
B.2.7 Subscripting and tsvarlist . . . . . . . . . . . . . . . . . . 158
B.2.8 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.2.9 By groups . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.2.10 Data manipulation . . . . . . . . . . . . . . . . . . . . . 164
B.2.11 Returned saved results, precision, scalars . . . . . . . . . 165
B.2.12 Display, Formats, Datatypes, and Precision . . . . . . . . 166

B.3 The Stata Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.3.1 Globals . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.3.2 Locals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.3.3 Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.3.4 Ifcmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.4 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.4.1 Scatter or Line Graphs . . . . . . . . . . . . . . . . . . . 172
B.4.2 Density and Local Polynomial Graphs . . . . . . . . . . . 173
B.4.3 Bar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 174
B.4.4 Area Graphs . . . . . . . . . . . . . . . . . . . . . . . . 175
B.4.5 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.4.6 The Graph Editor . . . . . . . . . . . . . . . . . . . . . . 176

B.5 Looping, Programming, and Automating Output in Stata . . . . . 176
B.5.1 Looping . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
B.5.2 Output: The file, estout, and xmlsave Commands . . . . . 179
B.5.3 The program Command, and ado Files . . . . . . . . . . . 180
B.5.4 Automating Appendices . . . . . . . . . . . . . . . . . . 181



CONTENTS vii

B.5.5 Finding Nearest Neighbors . . . . . . . . . . . . . . . . . 181
B.6 Simulation and Bootstrap . . . . . . . . . . . . . . . . . . . . . . 183

B.6.1 Simulation examples . . . . . . . . . . . . . . . . . . . . 183
B.6.4 Bootstrap examples . . . . . . . . . . . . . . . . . . . . . 185

B.7 Mata Programming . . . . . . . . . . . . . . . . . . . . . . . . . 186
B.7.3 Interactive Use . . . . . . . . . . . . . . . . . . . . . . . 187
B.7.4 Defining New Mata Functions and Type Declarations . . . 188
B.7.5 Void Functions . . . . . . . . . . . . . . . . . . . . . . . 190
B.7.6 GMM Estimation Using Mata . . . . . . . . . . . . . . . 190
B.7.7 Solving Functions . . . . . . . . . . . . . . . . . . . . . 193

C Human Capital 197

References 201





Chapter 1

Basic Ideas and Methods

In designing policy, in the sciences, or in everyday life, we are forever trying to
discern the effect of one thing on another. We want to know the effect on college
completion and later productivity if we introduce a new tax credit for education.
We want to know the effect on survival rates of a new drug, especially if we have
the disease the drug is supposed to treat. We want to know what we can say in an
interview or write on a resume to get a job offer. And all we have to go on is a
collection of observations on what happened in specific circumstances—if we are
lucky, a random selection of observations from a broad swath of circumstances.
To guess at the true impact, we need a stronger condition: we need the causative
factor to be randomly assigned.

This is why we do experiments for new drugs—too often, if a new drug is
given to patients in a nonrandom way, it will show positive effects, even if its
true impact is zero or negative. If we simply evaluate a treatment by comparing
outcomes of those who get the treatment and those who don’t, we run the risk
of getting entirely the wrong answer. Those who don’t get the treatment may be
systematically different, for example so sick that they cannot tolerate the treat-
ment or travel to get the treatment, and therefore have worse outcomes for reasons
unrelated to treatment.

Even finding individuals who seem similar in many respects to those who were
treated, to serve as a control group, is no guarantee of good results. For example,
Cameron and Pauling (1976) found that terminal cancer patients who got vitamin
C survived four times as long as similar patients who didn’t get the vitamin C treat-
ment. But those similar patients were not similar enough—subsequent research
(Moertel et al. 1985) using random assignment found no effect.

The random assignment study is the gold standard for inferring a causal rela-
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2 CHAPTER 1. BASIC IDEAS AND METHODS

tionship, but what can we do when it is not possible to randomly assign treatment?
If the treatment is divorce of parents and the outcome is educational attainment
of children, it is highly unlikely you will be allowed to randomly assign treatment
and observe outcomes. Or imagine the treatment is race and the outcome is hiring
at a firm. In this case, we cannot imagine actually running the random assignment
study, but we can imagine a thought experiment where we take existing applicants
and reassign race through magic. For measuring certain kinds of discrimination, it
is that imaginary magic random reassignment that can give us an estimate of a true
causal impact of race, but there are many causal impacts one might measure given
that magic power (Rubin 1986). Back in the real world, we need to use data with-
out random assignment, called observational data. This book is about the tricks
used to recover an estimate of the true causal impact using observational data.

In mathspeak, we want to explain an outcome (a vector of observations y,
one observation yi for each individual i) as determined by factors we can observe
(collected in a matrix X , the columns of which are explanatory variables). So we
assume there is some function y = f(X, e) where e is a vector of other factors that
determine y (perhaps random noise). It is most convenient to assume a particular
family of functions with a parameter to be estimated, e.g. linear functions with
parameter b:

y = Xb+ e

We refer to whatever family of functions we specify as our model, and then
figure out an estimator to get good estimates of the parameter b. We need not
really believe that our model is the truth, just that it is a useful depiction of a
more complicated reality, but we would like to believe that we are getting the best
estimates we can in whatever family of functions we’ve limited our attention to.
Let’s assume for now that we’ve picked the right family of functions.

The problem is, if X is not randomly assigned, we still cannot say that our
estimates of the parameter b are close on average (i.e. the estimates are not un-
biased) to what we would get in an experiment where X really was randomly
assigned. The estimates may not even get closer as we collect more and more
data (i.e. the estimates are not consistent). We may be narrowing in on the wrong
estimate altogether. In an extreme case, we will get the wrong sign, and find a
positive effect where the true effect is negative or a negative effect where the true
effect is positive. In the rest of this chapter, we will outline techniques used to
analyze data when the treatment is randomly assigned, then illustrate how these
techniques can fail with observational data, and discuss some general properties
we would want from any of the techniques discussed in the later chapters.
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The balance of the book focuses on estimating the impact of a treatment on
an outcome, such as the effect of education on earnings, where individual units
under study have control over their treatment and random assignment is essentially
impossible. We try to identify the impact of a specific X on y, or the range of
impacts, but we do not look at outcomes and try many potential explanations.
In other words, we look for “effects of causes” and not “causes of effects.” The
exploratory work of identifying possible causes is also important, as is model
building or theoretical investigations of likely functional forms, and that kind of
work may need to immediately precede the attempts described in this book of
estimating the size of an effect of X on y. We will merely assume that a good
theory or previous empirical work has already singled out the X variables whose
effect on y we wish to estimate.

We also will remain in the frequentist world that most applied researchers
operate in, rather than exploring Bayesian or entropic methods that require new
derivations for any new kind of estimation problem, though the connections be-
tween the methods outlined here and these other approaches is a fruitful and in-
teresting area for further work.

1.1 Basic statistics
There is a lot of interesting methodological subtlety in the basic statistics of the
sort you might see on the front page of a newspaper, such as tables of means
or proportions, or graphs of these numbers. Most statistics textbooks skip the
interesting methodological subtlety, and the book you are holding is no exception,
but we will at least touch on a few important points. If you know very little about
probability or data (or Stata, the program used throughout), you might want to
read the relevant appendices before proceeding.

1.1.1 Tabs
Perhaps the most basic statistical method is the one-way tabulation (tab) or, in
graphical form, the histogram. The simplest form of this is the tabulation of an in-
dicator variableX that takes on only values of zero and one (often called a dummy
variable or a binary variable or a dichotomous variable, though these terms also
have other meanings). The tabulation tells you how many observations in the data
have the value one and how many have value zero (first column of numbers in
Exhibit 1.1.2).
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The tab also indicates the proportions of observations in the data that have the
value one and how many have value zero (second column of numbers in Exhibit
1). The first, the proportion of observations in the data that have the value one, is
also the sample mean of X . In the tab shown, 60 percent of those surveyed said
they “Support the proposal” (whatever that means).

Exhibit 1.1.2 A simple tab.

. tab support

Support the |
Proposal | Freq. Percent Cum.

-----------------+-----------------------------------
0 (No or false) | 40 40.00 40.00
1 (Yes or true) | 60 60.00 100.00
-----------------+-----------------------------------

Total | 100 100.00

With a categorical variable that takes on more than two values, it is often
more convenient to create a histogram (with a fixed width of bars equal to the
minimum distance between two adjacent numerical values) to visualize how the
relative weight falls across categories. One might also create categories for a con-
tinuous variable and then use histogram to visualize the distribution of those
categories—though a histogram for a continuous variable can look quite different
depending on the bar width. An alternative is to divide the continuous variable
into groups at quantiles, for example ten deciles (help xtile), in which case
each group contains ten percent of the data, but the width of the resulting bars
may differ quite a lot (findit eqprhistogram for a Stata implementation).

We can do various kinds of inference even with a simple one-way tab, for ex-
ample testing whether different categories occur with the same frequency, testing1

whether the observed distribution matches some hypothetical or known distribu-
tion, or whether the “true” proportion is equal to some number. For example, if we
have a survey of a voting population, of whom 60 percent support a proposal, we
might want to know if the population proportion is really 50 percent (i.e. the high
proportion of voter approval is just sampling error). This requires a hypothesis
test.

1Using a “goodness of fit” test (Pearson 1900, Plackett 1983) or alternative methods; findit
mgof for a Stata implementation.



1.1. BASIC STATISTICS 5

1.1.3 Tests

For a hypothesis test, we pick α (often 5 percent), which is the proportion of
the time we will incorrectly draw the conclusion that the null hypothesis is false
(Type I error rate), also called the size of the test. The complement 1 − α (often
95 percent) is called the significance level of the test. Then we assume our null
hypothesis is true, and we pick a statistic that has a known distribution under the
null (or for which an approximate distribution is known). Then we can calculate
how likely it would be that we saw the data we actually have (or more extreme
data) given that the null is true, and call this probability the p-value. If the p-value
is less than α, we reject the null (Lehmann 1993, Berger 2003, Bayarri and Berger
2004).

For a single proportion (or the mean of an indicator variable), we could use
the Central Limit Theorem2 to get an asymptotically valid statistic3 based on the
normal distribution. Suppose we pick α = 0.05, and we assume that the true
population proportion (or mean) is the hypothesized value µ = 0.5 (50 percent).
Now we form the statistic

Z =
X − µ√
µ(1− µ)/n

=
.6− .5√

.5(1− .5)/n
= .2
√
n

and we can compute the probability that we would see a proportion so far from
0.5 in a sample of size n as 2(1 − Φ(.2

√
n)) where Φ(·) is the standard normal

cumulative distribution function. For a sample size of 100, this would give a p-
value of .045 so we reject the null.

However, in this case the asymptotically valid statistic gives us the wrong
answer. For a binary variable that takes on the value one (meaning “support the
proposal”) with probability p, we can figure out that the chance of observing any

2The Central Limit Theorem says that a sample mean less its expectation (the population mean)
divided by its standard deviation approaches the standard normal (mean zero, standard deviation
one) distribution as the sample size gets large; see A.3.4. The standard deviation of a sample mean
of n observations on x is the standard deviation of x divided by the square root of n. A variable x
that is one with probability p and zero with probability 1− p has standard deviation

√
p(1− p) as

shown in A.3.3.
3The term asymptotically valid means that the statistic’s distribution is essentially known for

very large sample sizes (i.e. the deviation from the assumed distribution gets arbitrarily small as
the sample size gets larger without bound). So as sample sizes get larger we can be more confident
we are not being led astray by assuming we know the distribution—often people assume that 100
is a large sample size, but sometimes a million is not large enough if the approximation is poor.



6 CHAPTER 1. BASIC IDEAS AND METHODS

mix of k ones and n− k zeros is

P (k successes inn trials) =

(
n
k

)
pk(1− p)n−k

and we can calculate the probability of observing 60 or more ones or 40 or fewer
ones. The hypothesis test is easy in Stata: bitesti 100 60 .5 gives a p-
value of 0.057 so we fail to reject the null.

A better approximate test for these situations, that easily generalizes to com-
plex survey data, is the svy:tab construction, followed by test commands as
desired (exhibit 1.1.5). If you don’t have complex survey data, you can still use
the svy commands by specifying svyset, srs.

Failure to reject the null is not the same as accepting that the null hypothesis is
true; in fact, rejecting the null is not the same as asserting that the null hypothesis
is definitely false (since we have picked α to be wrong a fixed proportion of the
time). When we fail to reject the null, it may be that we simply do not have
enough data, or a design with sufficient statistical power, to distinguish among
alternatives. If, in the tab above, the proportion continued to be roughly the same
as we collected more data, we would soon reject that the true proportion was one
half. We simply cannot say much (given the data we have) about what the true
proportion is, but what we can say is often usefully summarized by a confidence
interval.

1.1.4 Confidence Intervals

If we conceive a hypothesis test, there is a confidence interval that corresponds
to the range of hypothesized values for which we do not reject the null. For the
asymptotically valid statistic for a single proportion

Z =
X − µ√
µ(1− µ)/n

the values of µ for which we would fail to reject the null produce Z in the range
(-1.96,1.96), since values in that range give p-values greater than 0.05 (confidence
less than 95 percent). The endpoints are the values that give p-values of exactly
0.05 or confidence of 95 percent, so we call it a 95 percent confidence interval (for
any other choice of α we would construct a 1− α confidence interval instead).
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We can solve for the endpoints of that range:∣∣∣∣∣∣ X − µ√
µ(1− µ)/n

∣∣∣∣∣∣ = 1.96 ⇒ µ = X ± 1.96
√
µ(1− µ)/n

so for 60 successes in 100 trials we can assert that the true proportion lies in the
range (0.502,0.698) with 95 percent confidence. In this case, however, we have
already decided that the asymptotically valid statistic is not good enough for our
sample of 100.

Using the binomial probability distribution to create a confidence interval is
a little trickier, since there is no guarantee that any hypothesized µ will produce
a p-value of exactly 5 percent (Brown et al. 2001, Agresti and Coull 1998), but
svy:tab with the ci option is a good approximation. In the example in Exhibit
1.1.5, the confidence interval includes one half, but the test output indicates that
we would reject the hypothesis that the true proportion is one half.

Exhibit 1.1.5 Using svy:tab.

clear
set obs 100
g support=_n>40
la def s 0 "0 (No or false)" 1 "1 (Yes or true)"
la val support s
la var support "Support the Proposal"
svyset, srs
svy:tab support, ci
test _b[p2]=.5

1.1.6 Crosstabs
The crosstab is the simplest and most intuitive way to compare two distributions.
For example, we might compare outcomes for two medical procedures in a simple
two by two table. Suppose you have kidney stones and you can pick from two
equal-cost treatment options, P or O4 Published data on outcomes by treatment
(Charig et al. 1986) indicates a success rate for P of 83 percent and a success
rate for O of 78 percent, shown as row proportions in the tab of treatment versus
success in Exhibit 1.1.7.

4In fact, O (open surgery) is a substantially higher-cost option than P (percutaneous
nephrolithotomy), both in terms of pecuniary cost and morbidity associated with treatment. For
the purposes of the illustration, we will pretend they cost the same. There are additional treatment
options, including extracorporeal shockwave lithotripsy (ESWL) that have better success rates and
lower costs in many cases, which we will ignore for this example.
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Exhibit 1.1.7 A simple crosstab.

. use kidneyst, clear

. ta T S, row nokey

| Success
Treatment | 0 1 | Total
-----------+----------------------+----------

P | 61 289 | 350
| 17.43 82.57 | 100.00

-----------+----------------------+----------
O | 77 273 | 350
| 22.00 78.00 | 100.00

-----------+----------------------+----------
Total | 138 562 | 700

| 19.71 80.29 | 100.00

We could calculate column proportions as well, but those proportions make
little sense in this context. They answer the question, what is the chance that a
successful procedure was of type P or of type O? This is not what we care about
if we are suffering from kidney stones. We want to know which procedure has a
higher success rate, which is given by comparing row proportions, and P seems
the clear winner at 83 percent. The comparison of success rates naturally invites
a causal conclusion—who would choose treatment O given this information?

If we wanted to determine whether such a difference in success rates could
have arisen merely from chance, we could use svy: tab with the row and se
options, then test the hypothesis that success rates are identical, and find that
the apparent advantage of treatment P is not “statistically significant” (i.e. fail to
reject the null that success rates are identical). For the purposes of this illustration,
we will pretend we have 10 times the data shown above and the F statistic is 23
instead of 2.3 (by artificially manufacturing 7000 observations from 700), which
changes the p-value from ten percent to one and a half millionths. This is merely
to abstract from worries about statistical significance and focus on the ranking of
treatments.

What happens to our ranking of treatments when we compare the effective-
ness of the two treatments P and O for kidney stones in two size categories large
(at least 2cm) and not large? For both larger and smaller stones, treatment O
dominates, with success rates of 73 and 93 percent compared to 69 and 87 percent
(Exhibit 1.1.8). The ranking of treatments according to success rate reverses when
we make the comparison in each of two categories.

Exhibit 1.1.8 Success rate reversal.
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. use kidneyst, clear

. qui expand 10

. qui svyset, srs

. qui svy: tab T S, row se

. qui test _b[p12]=_b[p22]

. di "P=" _b[p12] ", O=" _b[p22] ", p-value is " r(p)
P=.82571429, O=.78, p-value is 1.507e-06
. qui svy, subpop(Large): tab T S, row se
. di "P=" _b[p12] ", O=" _b[p22] ", p-value is " r(p)
P=.6875, O=.73003802, p-value is .02176078
. qui svy, subpop(if Large==0): tab T S, row se
. qui test _b[p12]=_b[p22]
. di "P=" _b[p12] ", O=" _b[p22] ", p-value is " r(p)
P=.86666667, O=.93103448, p-value is 2.636e-09

The problem, as in all observational studies, is that the treatment is not ran-
domly assigned, so we cannot conclude that the measured impact (or measured
difference) is really related to the causal impact. Here, treatment O is much more
likely to be applied to the difficult cases of large stones, with an inherently lower
success rate. So in the aggregate, treatment O looks worse, but conditioning on
the stone size makes it clear that treatment O is more effective.

1.1.9 Comparisons of Means
The mean of a random variable x is denoted E(x), and the mean of a sample x of
n observations on x is given by

x = n−1
n∑
i=1

xi

though the line over a quantity is not a very congenial notation when we want to
sample mean of something more complicated than a single variable, so we can
also write

En(x) = n−1
n∑
i=1

xi

Often, we want to test whether the sample mean is “really” some number, say
whether mean income in some population is really 50 thousand when we observe
a sample mean of 60 thousand, and whether the difference could just be sampling
error. If we knew the standard deviation of x, call it σ, we could form the statistic

Z =
X − µ
σ/
√
n
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as we did with an indicator variable in section 1.1.3 (where we knew the standard
deviation of x because if you know the mean of an x that takes on two values, you
know its standard deviation as well).

Unfortunately we don’t know the standard deviation of x. We can get a good
estimate using the sample variance s2:

s2 =

∑(
X −X

)2

n− 1
⇒ s =

√√√√∑(
X −X

)2

n− 1

and plug it in for σ, but then we have a different ratio, with random variables
in the numerator and denominator. Gosset, publishing under the name Student
(Gosset 1908), figured out the limiting distribution of that ratio, so we have a
good approximation of the distribution of our statistic in the t distribution. The
Stata implementation is ttest.

For the comparison of two means, for example the mean wage of those who
have a college degree (c for college) and those who don’t (h for high school),
we can hypothesize no difference (µc − µh = 0) or some other value b for the
difference (µc − µh = b). If we knew the variance of wage for each group, the
relevant statistic would be

Z =
xc − xh − (µc − µh)√

σ2
c

nc
+

σ2
h

nh

(asymptotically a standard normal) but we don’t know those variances, so we use
the sample variances to compute

t =
xc − xh − (µc − µh)√

s2c
nc

+
s2
h

nh

which is distributed t as well.
If we assume that both groups have identical variance, we can use the sample

variance pooling the two groups:

t =
xc − xh − (µc − µh)√
s2
pooled

(
1
nc

+ 1
nh

)
which is distributed t(n− 2) = t(nc + nh − 2).
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Exhibit 1.1.10 Mean earnings by education.

. use http://pped.org/card, clear

. mean wage if educ>9, over(educ) nol noh
--------------------------------------------------------------

Over | Mean Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------
wage |

10 | 420.952 15.57002 390.4221 451.4819
11 | 476.6352 15.40384 446.4312 506.8393
12 | 563.5343 7.537055 548.7555 578.313
13 | 562.8007 12.22387 538.832 586.7694
14 | 596.1711 15.99349 564.8109 627.5313
15 | 571.025 21.34021 529.1808 612.8692
16 | 642.8932 12.5294 618.3254 667.4611
17 | 654.106 24.36092 606.3388 701.8732
18 | 776.2899 24.67559 727.9056 824.6741

--------------------------------------------------------------
. test [wage]10==[wage]11
( 1) [wage]10 - [wage]11 = 0

F( 1, 2796) = 6.46
Prob > F = 0.0111

When we draw any conclusions from this type of comparison, as seems in-
evitable, we are firmly back in the realm of incorrect casual inference, possibly
without noticing. Since college is not randomly assigned, the true causal impact
could be larger or smaller than the difference observed in our sample, or even the
difference observed in the population. We will return to this example in section
1.5.2.

1.2 Linear Regression

We return to our model from the beginning by assuming once more that an out-
come y is determined by a matrix of variables X , and the true model is one of a
particular family of functions with a parameter to be estimated: linear functions
with parameter b:

y = Xb+ e = x1b1 + x2b2 + . . .+ xkbk + b0 + e

Note that X has k + 1 columns, the last of which is a vector of ones, called the
constant term. Spelling this out without the matrix notation takes a lot of room,
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which is why matrix notation is so very popular:



y1
...
yi
...
yn

 =



x11 x12 . . . x1k 1
...

...
... 1

xi1 xi2
. . . xik 1

...
...

... 1
xn1 xn2 . . . xnk 1





b1

b2
...
bk
b0

+



e1
...
ei
...
en


This model is usually estimated via Ordinary Least Squares (OLS) and is the

workhorse of all empirical research. Estimation techniques such as maximum
likelihood and generalized method of moments give the same answers as OLS
for this model, but OLS has a simple interpretation as minimizing the distance of
outcomes y (in the y dimension) from the linear combination of the variables in
X we are using to predict y. Those distances are the squared residuals (ê)2 given
by:

ê2 = (y −Xb̂)2

and we minimize the sum of squared residuals when:

X ′Xb̂ = X ′y

If X ′X is full rank, then we can solve for the unique solution

b̂ = (X ′X)−1X ′y

, or rather, we have Stata do it for us by typing regress y x. Assuming the
linear model we started with is a good one, the error in our estimate of the effect
of X on y is linearly related to the correlation between X and the error term e

(b̂− b) = (X ′X)−1X ′e

so if X ′e = 0 the OLS estimate is exactly right, and if E[X ′e] = 0 then the OLS
estimator is right on average, i.e. it is unbiased. In fact, in that case, the OLS
solution is the best linear unbiased estimator (BLUE) of b by the Gauss-Markov
Theorem assuming elements of e have mean zero, constant variance, and zero
covariance.5 “Best” in the BLUE acronym means “has the lowest mean squared
error” (more on “unbiased” and “mean squared error” in section 1.4).

5see (Aitken 1935) for an extension to the case with a more complicated covariance structure,
and see (Plackett 1950) for some proofs.
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The predicted value, or fitted value, ŷi = Xib̂ is the best estimate of expected
y for observation i given the observed value of X , since the mean of y for obser-
vation i is Xib and our best estimate of that is Xib̂. Thus the predicted value is
the conditional mean of the outcome, meaning conditional on X observed. Most
forms of estimation in the rest of the book are conditional means, and the treat-
ment of conditional means is not too different from the treatment of means we
already have seen, and subject to all the same pitfalls of causal inference. Ques-
tions of interpretation in these models that are essentially estimating conditional
means often come down to “the mean conditional on what?”

1.2.1 Example with Two Explanatory Variables
The linear regression model fits a plane (or hyperplane, really, which is the higher-
dimensional version of a plane) through the data in such a way that the distances
of data points from the surface in the y direction are minimized. With two vari-
ables x1 and x2 included on the right hand side, the interpretation of an estimated
coefficient on x1 is the expected change in y with a one-unit change in x1, holding
x2 constant. The estimated coefficient on x2 is the predicted change in y with a
one-unit change in x2, holding x1 constant.

As a simple example, suppose we look at data on education and experience
as x1 and x2 and the variable lwage as y. Figure 1.1 shows the distribution of
education and experience in the data, and the figure 1.2 rotates that graph into a
two-dimensional representation of the three-dimensional space that also includes
lwage. It also adds the values of lwage, shown as bars rising from the points in
the education and experience plane, and shows a plane fit through the data points.
The slopes of that plane where it cuts the x1 = 0 and x2 = 0 planes on the left and
right show the coefficients on x1 and x2 (education and experience), also called
the marginal effects or partial effects of x1 and x2.

Note that when an economist says “marginal effect” or “marginal benefit” or
the like, the concept is related to the slope of a curve or a derivative, and the idea
is what is the increase in the expected outcome given a small change in an ex-
planatory variable. Do not interpret “marginal” to mean “minimal” or somesuch,
used by many other authors e.g. in this quote from the New York Times6 in July
2009:

Many workers who have lost their jobs are older and had spent their
lives working in one industry. In need of a job right away, many

6http://www.nytimes.com/2009/07/06/us/06retrain.html
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Figure 1.1: The two predictors education and experience.
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Figure 1.2: Partial effects in linear regression.
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pick relatively short training programs, which often have marginal
benefits.

Marginal is also use to mean “liminal” or right on the edge, for example the
“marginal participant” in a job training program is one who is right on the edge of
participating; that is the participant who would not be participating if the cost of
participating were increased by a very small amount.

1.2.2 Examples with Dummies and Interactions
Suppose we want to know the effect of education on future wage rate and we
are ignorant of the voluminous economic literature on the subject. We might
regress wage on an indicator variable for college education, if that was the treat-
ment whose effect we wanted to measure. That regression is equivalent to the
comparison of means across college and not-college categories. Comparisons of
means across groups can also be done by regressing the outcome on an exhaus-
tive set of mutually exclusive indicators, called the “fully saturated” regression,
and testing the equality of coefficients on indicator variables. Exhibit 1.2.3 shows
an example using regression with a test that equivalent to the example in section
1.1.9.

Exhibit 1.2.3 Mean earnings by education.

. use http://pped.org/card, clear

. mean wage if educ>9, over(educ) nol

. test [wage]10==[wage]11

. qui reg wage educ if inlist(educ,10,11), r

. test educ

. qui tab educ, gen(d)

. qui reg wage d11 if inlist(educ,10,11), r

. test d11

This illustrates one estimate of the effect of an additional year of education on
wage, just comparing those who finish 11th grade to those who finish 10th grade.
If we further hypothesize that the same mean difference obtains between those
who finish 11th grade and who finish 12th grade, or those who finish 12th grade
and those who complete a year of postsecondary education (13th year), or any
other pair of years, we can get a more reliable estimate by including education as
a linear predictor (Exhibit 1.2.4).

Exhibit 1.2.4 Mean wage by education.
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. use http://pped.org/card, clear

. reg wage educ, r

We can see from the table of mean wages that the wage of those with some
college (13, 14, or 15 years of education) is more comparable to those with a high
school (12 years) and there is a discrete step up at 16 years, so it might make
more sense to compare those with 16 or 17 years to those with 12 or 13 years of
education, or to use an indicator (dummy) variable for every level of education.

Suppose we think that education does have a linear effect (i.e. every year of
education, from 10th grade to 11th and 11th to 12th grade, and so on, has the same
effect on mean future wage) but that it is different in the south. We can regress
wage on education, a dummy for south, and the interaction term (the product of
the two variables). With all three terms on the right-hand-side, we are essentially
running two separate regressions, one for the south and one for the not-south.
Each has an intercept (mean wage at education equal to zero) and a slope (effect
of an additional year of education) term—for the south, the intercept is the sum
of the coefficient on the Constant term and the coefficient on south, and the slope
is the sum of the coefficient on educ and the coefficient on the interaction sXe.
It’s helpful to see the estimated coefficients presented as predictions on a graph
(Exhibit 1.2.5).

Exhibit 1.2.5 Mean wage by education.

. g sXe=south*educ

. reg wage educ south sXe, r

. loc a "tw lfit wage educ if south==0, ra(0 18) ||"

. ‘a’lfit wage educ if south, ra(0 18) leg(lab(1 "N") lab(2 "S"))

. di _b[sXe]*18+_b[south]

It’s easier to interpret the negative estimated coefficient on the south dummy
combined with the positive estimated coefficient on the interaction term on the
graph, as opposed to the regression, since we can see that education produces
larger apparent returns in the south, but even at the top education level those in
the south earn less. To see that in the regression, one has to add the interaction’s
coefficient times 18 (the maximum education in the sample) to the coefficient on
south, to see the difference is still negative at the maximum education level.
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1.2.6 Standard Errors
Given our OLS estimates, to do hypothesis testing, we need to form a statistic of
the same type we did for means:

t =
b̂− c
SE(b̂)

where c is some hypothesized value and the standard error SE(b̂) is our estimate
of the standard deviation of the estimator. The estimate of the variance-covariance
matrix of the estimator is called the VCE, and the square root of the jth diago-
nal element is the standard error SE(b̂j), which is our estimate of the standard
deviation of a particular coefficient.

Assuming the errors are independently and identically distributed (“identically
distributed” means errors are homoskedastic), we can use as our estimate of the
VCE

V̂ = V̂ ar(b̂) = s2(X ′X)−1

where s2 is an estimate of the variance of residuals, called “the mean squared
error of the regression,” which is the mean squared residual scaled by a degrees-
of-freedom adjustment. In other words, s2 is the estimate of e′e given by (n −
k)−1∑

i êi
2 where k is the number of columns inX (i.e. the number of explanatory

variables plus one, for the constant). This is the standard error reported by Stata
after regress with no options requesting an alternative calculation.

In fact, we should always use an estimate of the VCE robust to heteroskedas-
ticity, since if errors are homoskedastic the cost is minimal and the standard errors
will be nearly identical with or without a correction for heteroskedasticity. In
Stata, just put robust or vce(robust) after the comma in the regress
command to get a VCE robust to heteroskedasticity.

Often, we cannot reasonably assume that errors are uncorrelated across obser-
vations. In a survey, sample units are chosen that may exhibit correlated errors
relative to the regression model (e.g. pupils in the same school, or people in a
household). In population data, a variable measured at a level higher than the
observation level, e.g. mean county transportation times in a regression at the
individual person level, may induce correlation of individual errors at the higher
level (county in the example).7 In the cases described, however, we can often
still reasonably assume that errors are uncorrelated across clusters of observations

7If a variable X has an effect on outcome y at the individual level, and we measure not X
but mean of X within group, we can induce clustering where none existed in the individual-level
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(sampling units in the survey, or counties in the population data). In that case, we
can use the cluster-robust VCE by specifying cluster(v) or vce(cluster
v) after the comma following regress, where v is the variable that defines
cluster membership. For the estimated VCE to work well, the number of clusters
less the number of coefficients involved in a test must be large (at least 20, but
preferably more than 50) and the clusters must be of roughly equal size (Nichols
and Schaffer 2007, Rogers 1993). For survey data, there is often stratification to
be taken account of as well, so we must turn to svy commands in Stata (see also
section 1.5.4).

1.2.7 Nonlinear Effects in the Linear Model
Incorporating nonlinear effects is quite easy in the linear regression framework;
simply include the square of a variable, or any other function of a variable in
X . Of course, this will produce unbiased and consistent estimates only if the
assumptions of OLS still hold (E[X ′e] = 0 for unbiasedness or plim[X ′e] = 0 for
consistency).

Marginal Effects and Polynomials
If we have a single explanatory variable and its square in our preferred model,

we can write
y = xb1 + x2b2 + b0 + e

and calculate OLS estimates in the usual way.
However, the effect of x on E[y|x] in such a model now depends on the level

of x. So we speak of the marginal effect or partial effect8 of x

∂E[y|x]

∂x

∣∣∣∣∣
x=x0

= b1 + 2x0b2

which is an estimate of the effect of a one-unit change in x near x0 (and will
depend on the units in which x is measured). Our estimate of that quantity is

model. The importance of correcting standard errors for clustering is increasing in both the cor-
relation of errors and the correlation of explanatory variables, so the case of using variables mea-
sured at a higher level than the level of analysis is an important special case where the explanatory
variable does not vary within cluster (fixed effects is another important special case).

8Anyone who knows calculus recognizes this as the derivative; those who are unfamiliar with
calculus can simply think of this as the slope at the point x = x0, for example the slope at x = 2
shown on as the tangent line in figure A.2.
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just b̂1 + 2x0b̂2. If we have regressed y on x and its square, we can compute this
quantity at different values x0 and do hypothesis testing on it—the command in
Stata to do hypothesis testing on this kind of linear combination of coefficients is
lincom. We can also use the factor variables and the margins command, both
new in Stata 11, to get estimates of this type of model and to characterize marginal
effects.

Exhibit 1.2.8 Quadratic terms and marginal effects.

. use http://pped.org/card, clear

. reg wage educ c.exp##c.exp, r

. margins, post

Additional polynomial terms are added likewise. If we have a single explana-
tory variable and its square and cube in our preferred model, we can write

y = xb1 + x2b2 + x3b3 + b0 + e

and calculate OLS estimates in the usual way, but the effect of xwill again depend
on the level of x. The marginal effect of x is

∂E[y|x]

∂x

∣∣∣∣∣
x=x0

= b1 + 2x0b2 + 3x2
0b3

and our estimate of that quantity is b̂1 + 2x0b̂2 + 3x2
0b̂3, and our hypothesis testing

still involves a linear combination of coefficients (if we wanted a test involving
the ratio of two coefficients, or the product, or some other nonlinear function we
would use the Stata command nlcom).

When interpreting the output of a regression with polynomial terms in a vari-
able x, there are a few considerations to always keep foremost in your mind. First,
just because the sign of a higher-order term has a certain sign, you do not know
that sign will dominate at any observed value. For example, if a linear term has a
positive estimated sign and a squared term a negative sign, it is not the case that
the outcome will “turn down” as a second-order polynomial in x does, and it is
not always the case that the outcome is initially increasing in x. Those kinds of
conclusions depend on the distribution of x in the data. If the linear term is esti-
mated to be 1 and the squared term negative one half, for example, the slope of
the response function will be 1−x from the formula shown above, so the outcome
y will be increasing in x for x less than one, and decreasing for larger x. If the
whole distribution of x lies between negative 30 and negative 29, the nonlinearity
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will be minimal and y will be increasing in x everywhere; if the whole distribu-
tion lies between zero and one, y will still be increasing in x everywhere but the
nonlinearity will be very noticeable. If x is always greater than one, the effect of
x on y is negative, and increasingly so. A graph of marginal effects is the best
way to summarize nonlinear effects, as we reiterate in 1.3.2.

The default summary of marginal effects is usually the “average partial effect”
(APE) or “average treatment effect” (ATE) which is computed as the mean over
all individuals of the marginal effect computed for each individual. It is easy to
see how this kind of summary could be quite useless in the context of a quadratic
in x if we imagine that the marginal effect of x is 1 − x and the distribution of
x is symmetric around 1, for example if x is uniformly distributed on the interval
[0,2], in which case the average marginal effect is zero but the marginal effect is
negative for half the sample and positive for half the sample in a very predictable
way. This is a very different story than one where the marginal effect is zero for
everyone, or may be positive or negative for everyone in an unpredictable way,
so that the average marginal effect is zero for everyone. The information about
marginal effects that is implicit in an estimated model is almost always clearer in
a graph, but showing that information may require a deep understanding of the
marginal effects and some art with Stata graphics.

Marginal Effects and Logarithms
A common specification to estimate a nonlinear relationship in a linear model

specifies that the log of the outcome is linear in X (so ln(y) = Xb + ε), also
called a log-linear model, or the outcome is linear in the log of some x (e.g.
y = Xb + ln(x)c + ε) or a log-log specification (ln(y) = Xb + ln(x)c + ε).
In the log-log specification, the coefficient is interpreted as an elasticity (a one
percentage point change in x produces approximately a c percentage point change
in y).

In the log-linear specification, the effect of a variable x on y with the reported
coefficient b̂ is a proportional change of exp(b̂) − 1 in y for a one-unit change in
x, or a marginal effect of 100b̂ percent change in y with a change in x. When b̂
is small, a change of exp(b̂) − 1 is equivalent to a percent change of b̂, and the
approximation gets worse as b̂ gets larger.

The term “marginal effect” can be used to mean several different things, which
adds to the confusion. Sometimes the discrete change in y with a small discrete
change in x is meant, in which case one might call it a “discrete marginal effect”
for clarity. The usual meaning is the slope at a single point, which is the slope of a
tangent to the curve at that point. If one is discussing marginal effects in a log-log
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model, 100b̂ is not an approximation; it is the marginal effect. But the marginal
effect is an approximation to any discrete change.

The marginal effect of a one-unit change in x on y in a log-linear model is 100b̂
percent using calculus, but the calculus answer will be inadequate for approximat-
ing the effect of discrete changes in x when b̂ is large in absolute value. This in
turn is often caused by adopting units for x that mean that a one-unit change in X
cannot be considered small9 and 100b̂ is less similar to 100(exp(b̂)− 1). It is easy
to be led astray in these kinds of nonlinear calculations—ask yourself what the
marginal effect of an additional week worked is in the models shown in Exhibit
1.2.9.

Exhibit 1.2.9 Marginal effect with logged dependent variable.

. webuse psidextract, clear

. reg lwage wks, r

. loc w=_b[wks]

. g pwks=wks/52

. reg lwage pwks, r

. loc p=_b[pwks]

. di ‘w’, ‘p’/52, exp(‘w’)-1, (exp(‘p’)-1)/52

The last number shown is the ”discrete marginal” effect of a 52-week increase,
using the 100(exp(b̂)− 1) formula, divided by 52, to give the incorrect answer—
the correct answer of course divides by 52 first. The 100(exp(b̂) − 1) formula
is for a one-unit discrete change in X , which is at least as valuable for interpret-
ing coefficients, and often more valuable, but is not what is usually meant by a
marginal effect (see the manual entry for margins for more discussion), though
at least some authors conflate the two.

Whenever the coefficient is large, the interpretation of the marginal effect is
complicated by the fact that the calculus answer is probably a poor approximation
to plausible discrete changes in X, and even a coefficient of 0.065 can be large for
this purpose.

Exhibit 1.2.10 Marginal effect with logged dependent variable.

. reg lwage ed, nohe

. loc r = _b[ed]

. di ‘r’*4, (1+‘r’)ˆ4-1, (exp(‘r’)-1)*4, (exp(‘r’*4)-1)

9Sometimes we economists say “marginal” to mean “small enough” for calculus to give a
reasonable approximation to a discrete change. For a marginal change, we say that only “first
order” effects matter, or all other effects are “second order” which refers to the notion of a Taylor
series expansion; see A.2.2.
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In these cases, of course, one is well-advised to calculate the effect of a dis-
crete change rather than rely on the marginal effect. I.e. the last answer above
(.2979877), given by thoughtful application of the 100(exp(b̂)−1) formula, is the
best answer, and the naive approach gives an answer seven eighths as big.

One issue is that we want to have the standard error as well, and b̂ has it given
in the regression table (100*se), together with the confidence interval and p-value
on a test of b̂ = 0, whereas 100(exp(b̂) − 1) needs nlcom to calculate those,
which makes tabulating estimates look like more work, but note how easy it is to
get the discrete marginal effects tabulated using the user-written estout on SSC
(esttab is part of the estout package).

Exhibit 1.2.11 Marginal effect in estout.

. reg lwage ed, nohe

. nlcom exp(_b[ed])-1

. esttab, b(%10.7f) se(%10.7f) nostar transform(exp(@)-1 exp(@))

Marginal Effects and Logical Relationships
Even if we are using the new margins command in Stata 11 with factor

variables to get good calculations of average marginal effects, or we are using
another automated solution to get marginal effects averaged over the appropriate
population or subpopulation, we cannot suspend our critical faculties and take at
face value the results as given. It is always advisable to understand how you would
construct the average marginal effect by hand, even if the calculations would be
too tedious to actually do by hand, so that you have a good sense of whether they
make sense. One common pitfall in the area of calculation of marginal effects
is measuring the partial effect of one variable that is logically related to another.
This is easy to see in the case of a linear regression of y on x and its square (you
cannot change one without changing the other) but more difficult cases frequently
trip up even experienced researchers.

One tricky case involves indicator variables that are logically related. Suppose
we have an indicator variable c for “college” (zero for those without a college
degree and one for those with a degree) and sc for “selective college” (one for
those with a degree from a set of schools identified as selective according to some
standard, and zero otherwise). Now we can interpret the coefficient on c as the
return to college (i.e. the difference in predicted y for c equal to one relative to c
equal to zero) and the sum of coefficients on c and sc as the return to a selective
college, or the coefficient on sc as the additional return to a selective college
relative to a non-selective college.
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If the indicators are also interacted with continuous variables, or y is subjected
to a nonlinear transformation (e.g. log), or we are using a nonlinear model, we
cannot simply look at the coefficients, and we need to actually compare predic-
tions at different levels. The standard approach is to use the empirical distribution
of every variable but the variable of interest, and set the variable of interest to two
values in order to make two predictions, then average the difference in predictions
across the sample. But note for c and sc above, if we leave c as it appears in the
data and set sc to zero and one in turn, we are imposing logical contradictions
on our counterfactuals–we are making predictions for observations that went to
a selective college (where sc=1) but did not go to college (i.e. c equals zero).
Likewise if we leave sc as it appears in the data and set c to zero and one in turn.

We must somehow take account of the dependency in the variables when we
predict. The natural way to get a marginal effect for sc is to leave c as it appears
in the data and set sc to zero and one in turn for only the observations where c
equals one. The natural way to get a marginal effect for c is to turn off sc when
we turn off c, but another possibility is to make predictions only for observations
where sc equals zero, which will give a different answer. The answer depends on
the question—do we want to imagine denying college to all those who did not go
to selective colleges, and then giving it to all of them, or do we want to imagine
denying college to everyone, and then giving everyone college (and a select few a
selective college)? We will return to similar questions in 1.3.2.

1.2.12 Model Diagnostics
There are many popular techniques for assessing the quality of a regression. One
important class of techniques uses graphs, for example a scatterplot of residuals ê
versus fitted values ŷ. If any structure is discernable in that graph (for example,
curvature or cyclicality in the mean residual) then the model is probably misspec-
ified. This is implemented in Stata by typing rvfplot after regress. Another
important class of techniques uses hypothesis tests; for example, a RESET (Ram-
sey 1969) test testing whether there are any neglected nonlinearities, e.g. whether
the square (or another nonlinear transformation) of any of the variables x in X
should be included as an additional regressor. This is implemented in Stata by
typing estat ovtest after regress. The Stata manual entry [R] regress
postestimation covers some other useful techniques, including added-variable
plots (avplots) and the augmented component-plus-residual plot (acprplot).

One popular technique for assessing the quality of a regression is to look at the
variance of the fitted values ŷ divided by the variance of the dependent variable
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y, called R2 (R squared). This is sometimes said to be the proportion of variance
“explained” but is an extremely unreliable measure of the quality of a regression.

1.2.13 Local Polynomial Regression
There is a very large class of semiparametric models, where one makes fewer as-
sumptions about the model that generated the data, and aims to get estimates more
robust to various potential specification errors. Often, these are “local” models,
where we assume a model holds only for a subset of the data in some neighbor-
hood, and thus get estimates in neighborhoods of a variety of points. One useful
member of this class is local polynomial regression, which is used later in the
chapter on Regression Discontinuity designs. In fact, we can limit our attention
to polynomials of degree one (linear regressions) since it almost always better to
use an odd degree for these models and curvature in the conditional mean func-
tion can be observed without using a higher degree polynomial. The manual entry
on lpoly gives a good description of these models, and further references, but
you can just think of lpoly as estimating 50 (or 100, or however many you like)
linear regressions on 50 subsets of the data and connecting the dots (predictions
of the linear regressions at prespecified X values).

Assuming we have already chosen degree(1) option for linear regression,
there are two other choices that define how smooth our estimates are, and offer a
tradeoff between bias and variance. The kernel and bandwidth options of lpoly
determine how many observations are used in each of the 50 (or however many)
linear regressions run, and how the observations farther from the current prespeci-
fiedX value are weighted in the regression. The shape of the kernel, which defines
how quickly weights fall to zero as you move away from the givenX value, is less
important than the bandwidth, but the kernel is important in deciding what a given
bandwidth means in practice. Figure 1.3 shows how the Gaussian and Epanech-
nikov kernels include twice as many observations as most other kernels with the
same bandwidth.

Here’s an example using the simplistic auto data (note that mileage is approxi-
mately inversely related to weight, which is why US fleet standards use a harmonic
mean, and the rest of the world uses fuel consumption per distance rather than
distance per fuel expenditure to measure efficiency) which illustrates how a small
bandwidth that minimizes bias for a local estimate can produce high-variance es-
timates especially where data is sparse:

Exhibit 1.2.14 Local linear regressions with various bandwidths.



26 CHAPTER 1. BASIC IDEAS AND METHODS

0
.1

.2
.3

.4
y

−2 −1 0 1 2
x

Epanechnikov

0
.1

.2
.3

.4
y

−2 −1 0 1 2
x

Gaussian

0
.1

.2
.3

.4
.5

y

−2 −1 0 1 2
x

Rectangular

0
.5

1
1.

5
y

−2 −1 0 1 2
x

Parzen

0
.2

.4
.6

.8
y

−2 −1 0 1 2
x

Epan2

0
.2

.4
.6

.8
1

y

−2 −1 0 1 2
x

Biweight

0
.5

1
1.

5
2

y

−2 −1 0 1 2
x

Cosine

0
.2

.4
.6

.8
1

y

−2 −1 0 1 2
x

Triangle

Figure 1.3: Kernel choices.

clear all
sysuse auto
lpoly mpg weight, k(tri) deg(1) bw(100) gen(x1 y1) nogr
lpoly mpg weight, k(tri) ddeg(1) bw(200) gen(x2 y2) nogr
lpoly mpg weight, k(tri) ddeg(1) bw(400) gen(x3 y3) nogr
sc mpg wei||line y3 x3||line y2 x2||line y1 x1, name(n) ti(Nonparametric)
qui glm mpg weight, link(power -1)
predict mhat
sc mpg weight||line mhat weight, sort name(p) ti(Parametric)
gr combine n p, nocopies ycommon graphr(fc(white)) xsize(6) ysize(3)
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Figure 1.4: Local linear regression.

While local polynomial regressions may be useful for exploring functional
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form, we assume here that theory provides guidance on functional form. Recov-
ering functional form where it is unknown, and where the variables that are ar-
guments of the function that determines the outcome are also endogenous, is too
hard a problem for this book. If one has plausibly exogenous explanatory vari-
ables, one can engage in “model building” by using local regression, restricted
cubic splines (Stata command mkspline), multivariable fractional polynomials
(Stata command mfp), or penalized splines—see pspline on SSC and Ruppert
et al. (2003).

1.3 Regression for Limited Dependent Variables

Often, the outcome variable is not continuous and unbounded, as is typically as-
sumed for a linear regression (if e in the equation y = Xb + e is normally dis-
tributed, the outcome variable y must be continuous and unbounded). Typical
cases are where the outcome is a binary (zero or one, no or yes) variable, a cate-
gorical variable, a count, or a nonnegative variable (such as labor earnings, which
may be zero but not negative), including a duration (such as time to exiting some
state).

1.3.1 Linear Probability Model

Even if the dependent variable is a binary (zero or one) variable, one can still run a
linear regression, called the linear probability model or LPM. However, the error
is either 1 − Xb or Xb for each observation, which is obviously not normally
distributed. If we can specify how the error is distributed, we will get a much
more efficient estimate, in general. Even if we don’t, and just run OLS, we want
to make sure our estimates are heteroskedasticity-robust, since heteroskedasticity
is guaranteed. One way to improve efficiency is to use weighted least squares, but
probit and logit and similar models are more common estimation strategies
with a binary zero/one variable. One advantage of the linear probability model
is that the estimates are directly interpretable as the marginal effect of X on the
predicted probability y is one; one disadvantage is that this marginal effect is
assumed to be the same regardless of the level of X, which is never true. Imagine
a case where the coefficient on X is one half and the probability at mean X is one
quarter. An increase in X of one tenth may produce an increase in the probability
of about 0.05 at mean X, but now imagine X is two units higher and the predicted
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probability is above 0.95; now it is simply not possible for an increase in X of one
tenth to produce an increase in the probability of about 0.05.

1.3.2 Probit and Logit and alternatives

A useful starting point is to construct a linear index model

y = I[Xb+ e > 0]

where the indicator function I[.] is one when the condition is true, and zero other-
wise. We can also write

Pr(y = 1) = F [Xb]

and get an equivalent model if F is the cumulative distribution function of e.
If we pick a family of distributions for e, or a family of distribution functions
for F , we can easily estimate via maximum likelihood. Assuming e is normal
(or F is the cumulative normal distribution function) produces a probit model
and assuming e is logistic (or F is the cumulative logistic distribution function)
produces a logit model.

The easy way to conceptualize these two models in comparison with the linear
model is to imagine regressing on a single X variable and graph predicted prob-
abilities. It’s easy to see in figure 1.5 that all three models are similar near the
center, but have different behavior in the tails. The probit and logit are so
similar as to be nearly identical unless the effect of a variable is very large or its
variance is very large, so that predicted probabilities in the tails are more common.

In the probit and logit models above, we have to pick a variance s for
the error term as well. Even in the case where the family of distributions is chosen
correctly, probit and logit and similar models identify b/s, not b. That is,
the coefficients are known only up to some scale, but ratios of coefficients can
be identified, since the scaling parameter s cancels for a ratio of two coefficients.
There is also no problem for predicted probabilities conditional on X . However,
if s is not independently and identically distributed, the probit and logit
models fall apart. See the manual entry for the heteroskedastic probit hetprob
for one approach to that problem. If errors e exhibit “unobserved heterogeneity”
(for example, the “error components” model of a fixed-effect probit), point esti-
mates are typically biased in nonlinear models (Yatchew and Griliches 1985), but
the marginal effects can be estimated under fairly weak assumptions (Wooldridge
2005a); see also 3.7.
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The probit and logit models both produce estimated coefficients that are
not directly usable, except for comparisons of ratios of coefficients; see also Ai
and Norton (2003) and Norton et al. (2004). The marginal effects are often com-
puted as a derivative at the mean (no longer the default behavior as of Stata 11, I
am happy to report) or as the average across some group of observations (e.g. the
whole estimation sample). The estimated effect on expected y (predicted probabil-
ity) for a one-unit change in one variable x for an individual i can be approximated
as:

E(yi|Xb+g(x+1))−E(yi|Xb+gx) = F (Xb+g(x+1))−F (Xb+gx) ∼=
dpi
dx

dpi
dx

= Dxpi = DxF (Xib+ gx) = f(Xib+ gx)g

but the approximation is only good for small gx and of course

E [f(Xib+ gx)g] 6= f(E[Xib+ gx])g

in general, when f is nonlinear.
Variants of the logit and probit models include choice models (discussed in

help files and manual entries for asclogit, asmprobit and asroprobit).
A close relative of many choice models is the Conditional Logit (see help files
and manual entries for xtlogit and clogit). Other models in this family
include Ordered Logit and Probit (see help files and manual entries for ologit
or oprobit) for ranked categorical outcomes, Multinomial Logit and Probit (see
help files and manual entries for mlogit or mprobit) for unranked categorical
outcomes, and Stereotype Logit (slogit, a compromise between ologit and
mlogit). There are a number of user-written variants as well, findable with the
findit command, including gologit2 and soreg.

1.3.3 Survival Regression
In the bad old days, researchers regressed duration (time in some state, e.g. poverty
or unemployment, as an outcome variable) on covariates, but there are a variety of
problems with that approach related to censoring and truncation, and appropriate
functional forms. Today, researchers use a “survival” regression, treating the haz-
ard of an event occurring at each point in time, instead of the time to first event,
as the outcome variable which is a function of X . In these models, an event is
typically called a “failure” because of many implementations designed to model
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equipment failure. An event might be death in some models, hence “survival”
regression.

Time may be thought of as continuous or coming in discrete chunks, and may
be measured either way in the data. Continuous-time models are discussed at
length in [ST], for example in the manual entries for streg and stcox for esti-
mating the classic Cox (1972) proportional hazard model, and Cleves et al. (2008),
so the focus here is on discrete-time models. In fact, when periods of time are very
short, the two classes of model are virtually identical, whether we think of events
as actually only occurring (or not) in each period, or whether they may happen in
continuous time and they are “interval censored” i.e. we only know which longer
time period they occur in. Time periods in a state, up until an event occurs, are
known as “spells” (e.g. a spell of unemployment, where getting a job is the event).

Discrete-time hazard models are discussed in detail in Singer and Willett (2003)
and Jenkins (2005), among other sources. The hazard of an event that can occur
with some probability within a period is the probability of occurrence within the
current period conditional on not having observed an occurrence in the periods
preceding the current one. For a probability distribution f(t) over time until event,
with the cumulative probability F(t), the hazard is h(t)=f(t)/[1-F(t)], which in a
discrete-time model is the conditional probability of failure in the current period
(conditional on not having already failed). F(t) is also called the failure function,
since it specifies the probability of observing a failure by time t.

One appealing way to model the hazard is to specify that the odds of observing
an event in the current period conditional on not having observed an occurrence
in the periods preceding the current one are proportional to some baseline odds
(odds when X=0) that varies with elapsed time:

h(t|X)

1− h(t|X)
=

h(t|X = 0)

1− h(t|X = 0)
exp[Xb]

so
logit[h(t|X)] = lnh(t|X = 0)− ln[1− h(t|X = 0)] +Xb

Maximizing the likelihood of this “proportional odds” model is equivalent to esti-
mating a logit model (estimating a cloglog model on identical data gives a similar
“proportional hazard” model) with suitable controls for time periods. The logit
regression includes observations on individuals for each time period up to and in-
cluding the date of an event, where the outcome variable is zero for each period at
risk where an event did not occur, one in the first period where an event occurred,
and missing elsewhere. Thus, when someone in a eight-month-long survey is poor
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for the first time in month two, beginning a spell of poverty, then exits the spell in
month six and is not poor again, their sequence of outcome values is .,0,0,0,0,1,.,.
in a logit regression of exiting poverty on covariates (note that covariates need not
be constant over time). The underlying data on poverty is 0,1,1,1,1,0,0,0 in this
example and some recoding is necessary to get the data into the right form for
estimation; see Cox (2007) for relevant code.

Several common difficulties of duration modeling, including the pervasive
problem of right censoring, are easily solved in this framework. The baseline
odds can be captured in indicator variables for each time period (also known as
time dummies), or several indicator variables for groups of time periods (such as
first year, second year, third and later years), or the duration dependence can be
parametrized by including a single variable that is some function of time. The ad-
vantage of parametrically modeling duration dependence (as opposed to including
time dummies) is that mean and median duration can be calculated. A common
specification includes the natural log of time measured in elapsed periods. When
this takes a negative coefficient, the hazard decreases over time, but at a slower
and slower rate.

Censoring and truncation
Censoring of a spell in some state, or the duration of such a spell, means that

we do not observe the start or end date of the spell, but only know that it is above
or below some threshold. Right censoring occurs when no further data is available
on an individual, but no event has occurred to date. Thus, all that is known for
the individual is that the event must occur after the latest observed date. This is
a common feature of duration data, and typically occurs because the data comes
to an end before an event occurs. Left censoring occurs when the beginning date
of time at risk is not observed. If we wanted to know the duration of spells of
poverty or unemployment in survey data, for example, we would need to know
when each surveyed individual who is poor or unemployed at the time of the
survey became poor or unemployed. Interval censoring means we only know that
an event happened in some time period (we know the day, but not the time of day,
or we know the month, but not which day), which is a common motivation for
using discrete time survival models.

Truncation refers not to whether a variable’s value is measured precisely or
its value is known to fall in some range, but whether it is measured at all. Left
truncation occurs when only those who have not experienced an event to date are
included in the sample; for example cancer patients are sampled and only those
who are still alive can be sampled. Right truncation occurs when only those who
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have experienced an event are included in the sample, such as a sample composed
entirely of those who got jobs after a spell of unemployment (those who are still
unemployed don’t appear in the sample). Unfortunately, there is little that can be
done about truncation in a typical model, though Klein and Moeschberger (2003)
describe various approaches.

Predicted duration
Define the survival function S(t) = 1 − F (t), which gives the probability of

no event to date as of each period t. Then the median duration until event is the
first t such that S(t) < .5, i.e. half of the individuals with survival function S(t)
will have experienced an event by that date. The mean duration is the mean time
until event, or the sum

m =
∞∑
k=1

kf(x) =
∞∑
k=1

kh(x)S(x)

and since S(k) becomes very small as k gets large and h(k) becomes very small as k
gets large, we can compute a finite sum with very little error by brute force, adding
terms until the change is negligible. Since S(k) and h(k) vary with observable
characteristics X, we can calculate projected median and mean duration for each
individual at each point in time.

It makes most sense to calculate projected median and mean duration for each
individual at the first point in time they are at risk, and then take the mean of pro-
jected median and mean duration across all individuals. This answers a question
of the form, what would I predict duration until the first event to be, conditional
on being observed newly at risk? Survey weights are straightforward to use in
computing a weighted mean across individuals. We cannot account for possible
future changes in characteristics in future time periods, but the evolution of these
characteristics is to some degree captured in the measured risk differentials. Inter-
actions between explanatory variables in this setting would capture more projected
future changes, but would result in estimates much more difficult to interpret. In
general, we seek a balance between a suitably saturated model so that important
differences in risk may be observed, and a parsimonious one so that we may make
sense of our estimates.

Heterogeneity
A common concern is that some individuals may simply have inherently lower

risk than others (lower ”frailty” in the parlance of survival regression). It is pos-
sible to model individual-level heterogeneity in frailty by assuming a distribution
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for individual-level frailty terms. For example, if we assume gamma heterogene-
ity we can use the method described by Meyer (1990), and if we assume normal
heterogeneity, we can use xtcloglog in place of logit (Jenkins 1995), (Jenk-
ins 2005); see also pgmhaz8 on SSC. In practice, one is likely to see significant
differences between models that account for individual heterogeneity and those
that don’t, but not substantial differences between various models that account
for individual heterogeneity. Thus the (essentially arbitrary) choice of distribution
does not seem too restrictive, and less parametric alternatives also often produce
similar results. Of course, it is the responsibility of the researcher to estimate sev-
eral plausible alternative models to assess the robustness of results in the given
data.

Multiple failures
When the same individual may experience more than one event in the data

(think of a model predicting the end of a spell of smoking, where quitting smoking
is the failure, and recurrence is common), we cannot usually treat these separate
spells or failures as independent draws (Cleves 1999). One method for accounting
for dependence is to explicitly model heterogeneity across individuals but assume
the separate times to failure are independent draws from that individual-specific
distribution; another is to adjust the VCE for clustering, which is very simple in
practice in the discrete-time model with vce(cluster id). If order of fail-
ures is important, and we have information on order, we can use explicit models
for each failure, treating each in turn as a single-failure model. For example,
second marriages may have an intrinsically higher or lower failure rate than first
marriages, conditional on individual frailty and covariates, and we often have in-
formation on marital history.

While multiple-failure data can be more troublesome, it also offers the poten-
tial for improved estimates with higher efficiency and more plausible assumptions
justifying estimation. For example, multiple-spell data can allow for identification
under much less stringent conditions than single-spell data (Honoré 1993).

Competing risks
In many cases where more than one event can take place, one event may pre-

clude another. For example, if we are modeling the duration of marriage, death
competes to occur before divorce. If we observe someone married until death, it
may be the case that they would have gotten divorced the next year, so we may
want to treat the death as a censoring of the observed data (pretending that the di-
vorce would have happened eventually had they lived forever), but a more natural
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model is one that assumes people are at no risk of divorce once they are dead.

While censoring means you cannot observe the event of interest, but know
that it happened after the last observed date, a competing event prevents the event
of interest from occurring, which requires a different model for many purposes.
For example, the Kaplan and Meier estimator is no longer a good measure of
prevalence for an event of interest. Gooley et al. point out that one minus the
KaplanMeier estimator is a biased estimator of the failure function F(t) because
the KaplanMeier estimator treats competing events as if they were censored.

Competing risks models specify the time to failure time as the minimum of
a set of competing “latent” failure times. Unfortunately, the joint distribution of
latent failure times is not identified from the distribution of minimum times to
failure together with types of failure (Cox 1959; 1962, Tsiatis 1975, Gail 1975).
The joint distribution of the latent failure times can only be identified if some
additional structure is imposed, for example independence of latent failure times.
Stata 11 introduced the Fine and Gray (1999) semiparametric proportional hazards
model for continuous time, as described in the manual entry for stcrreg (see
especially the section stcrreg as an alternative to stcox).

A popular class of competing risks models assumes that the hazards have a
Mixed Proportional Hazard specification, where hazards depend multiplicatively
on elapsed duration, observed regressors and unobserved heterogeneity (frailty)
components; for more detail, see e.g. Lancaster (1979; 1990), Vaupel et al. (1979),
Kiefer (1988), Van den Berg (2001), Hahn (1994), and Ridder and Woutersen
(2003). Heckman and Honoré (1989) extend the Mixed Proportional Hazard
model using a nonparametric model, and Abbring and Van den Berg (2003a) ex-
tend their result to a larger class of empirical applications, and multiple failure
data.

Ordered choice models are also used as duration models. (Ridder 1990) showed
the equivalence of the conventional ordered choice model and Generalized Accel-
erated Failure Time models for discrete time duration data, which include the
Mixed Proportional Hazard model as a special case. (Cunha et al. 2007) added
stochastic thresholds and interval-specific outcomes, and discuss nonparametric
identification of the richer model.
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1.3.4 Tobit
The Tobit model (Tobin 1958, McDonald and Moffitt 1980, Amemiya 1984, Breen
1996) in its pure form assumes that

y = y∗ ⇐⇒ y∗ = Xb+ u ≥ 0
y = 0 ⇐⇒ y∗ = Xb+ u ≤ 0

i.e. a positive outcome y is observed only when some latent variable is positive
(y∗ = Xb + u > 0) and otherwise is y = 0. The error is assumed to be normally
distributed and results are very sensitive to violations of that assumption. In addi-
tion, the “lower limit” may be some value other than zero, and there may also be
an upper limit (see the , but these values must be known. If a lower limit is not
specified, Stata will assume the lowest observed value of y is the lower limit, but
if this is not the correct assumption, biased estimates will result.

The output is also hard to interpret because estimates of b do not easily trans-
late into effects of x on y. There are a variety of marginal effects possible af-
ter tobit including the effect on the expected value of the latent variable y∗,
the effect on the expected value of the outcome variable conditional on it being
larger than the lower bound, and the effect on the probability of the outcome vari-
able being larger than the lower bound. By default Stata’s margins (or mfx
in older Stata) command for marginal effects margins, dydx(*) shows the
effects on the latent variable, which are just the coefficients reported by tobit.
You have to specify the predict() option to margins (or mfx in older ver-
sions of Stata) to get the other marginal effects; see the manual entry on tobit
postestimation for more.

Suppose the outcome is hours of work, and we observe wages for everyone
(including those at zero hours). We could think of the y = 0 observations as
wanting to work exactly zero hours, or to “buy labor” at that wage, i.e. to work
negative hours, if such a thing could be observed in our data. Suppose we think
that the log of hours is a function of the log wage, not hours, i.e. a given percent-
age increase in wage causes a constant percentage increase in hours worked, in
expectation. The trouble is, the log of zero is undefined, so the lower limit cannot
be defined. Sometimes researchers will define the log of hours in this case to be
some number lower than the lowest observed value, which produces biased and
inconsistent estimates (using intreg gives the same wrong answer). It makes
no sense to think of negative hours if a given percentage increase in wage causes
a constant percentage increase in hours worked, in expectation. It also makes no
sense to think of zero hours in that case!
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Often, a researcher wants to model the log of y as a linear function of a set of
variables X , but there are some cases where y = 0, so the outcome variable lny
is missing since the log of zero is undefined. One approach used in practice are
to replace zero outcomes with a small positive number a (with a smaller than any
observed positive outcome) and then take logs and run tobit with a lower limit
at ln(a). The only situation where this produces good estimates is where there
is imperfectly sensitive equipment measuring outcomes, where a is the detection
limit, so any outcome below a is recorded as a zero, and a is known a priori. One
example in economics is where outcomes are rounded, say to the nearest hundred,
so the lower limit on detection is 100, and a zero might be 50 or anything less,
whereas any outcome in the interval from 50 to 150 is recorded as 100. Even if
a detection limit describes the general type of problem, but the lower limit a is
unknown, picking a small positive number a (with a smaller than any observed
positive outcome), taking logs, and running tobit with a lower limit at ln(a) is
a bad idea (Carson and Sun 2007).

Another approach is to use a two-part model or a hurdle model (McDowell
2003), or to use the positive values only in a selection model (see section 4.6).
But if we believe the conditional mean of y is a exponential function of a linear
index Xb (similar to the assumption that the log of y is a linear function of a set
of variables X), there is a different approach using GLM or poisson in section
1.3.5 that gives consistent estimates. On the other hand, we will see in section
1.5.4 that it makes no sense to regress hours on wage (or quantity on price in
any demand system) using any functional form unless we have very special data
indeed.

In short, the Tobit model is a finicky model, and I have never seen an empirical
application where it made the most sense. In particular, some kind of GLM or
two-part model always seems preferable. With endogeneity concerns, one would
almost always prefer a GMM model (section B.7.6) to ivtobit or the like.

1.3.5 GLM and Poisson
The Generalized Linear Model includes linear regression, logit, probit, and Pois-
son regression as special cases, in addition to a range of other models. The idea is
to use a linear index Xb but introduce a link function g such that

E(y) = g−1(Xb)

and specify a distribution type for the outcome y. Hardin and Hilbe. (2007) pro-
vide a wealth of information on various link functions and families of distribu-
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tions.
One common model is to assume a log link, so

E(y) = exp(Xb)

which is the same as assuming that the log of E(y) is a linear function of X . Note
that regressing ln(y) on X assumes that E(ln y) is a linear function of X , but
it need not be the case that ln(E(y)) is a linear function of X . However, if we
postulate an error term such that

y = exp(Xb)u = exp(Xb) exp(v) = exp(Xb+ v)⇒ ln(y) = Xb+ v

assuming y > 0 there is a natural analog to OLS with a logged dependent variable.
The only difference in assumptions about error terms, and of course that glm and
the equivalent poisson model allow observations where y = 0. When there are
a lot of observations where y = 0, the results of OLS using ln(y) and GLM using
y are likely to differ more, but GLM may also fit the data worse in this case. If the
cases where y = 0 should be small positive values (i.e. zeros are never true zeros)
but are observed as zeros due to rounding to a known precision, it may make
sense to use a Tobit regression with ln(y) instead; if they represent the outcome
of a different process, a two-part model may be appropriate; if they represent the
result of overdispersion, a negative binomial regression (nbreg) or zero-inflated
model (e.g. zip) may be more appropriate.

Another common model is to assume a logit link, so

E(y) = invlogit(Xb) =
1

1 + exp(−Xb)
for a model where y is not binary, but is a fraction or proportion, as proposed
by Papke and Wooldridge (1996). Stata’s glm command was modified to fit that
model with options family(binomial), link(logit), and robust. Note that if y is bi-
nary, this model produces essentially the same output as logitwith the robust
option.

The glm command also provides the capability to define new link functions
and families of distributions; see the manual entry for glm for details.

1.4 Properties of Estimators
The way to get good estimates for any particular case is to ensure that our esti-
mator has good general properties. These may be finite-sample properties, mean-
ing for a sample of size n with characteristics like our data, we can say that the
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distribution of the estimator has certain properties. Or these may be asymptotic
properties, meaning that as we collect samples of size n with n increasing without
bound, we can make statements about the limit of that sequence which are reason-
ably good approximations for large samples. Often asymptotic approximations
are good with n fairly small, at 50 or 100, but sometimes millions of observations
do not guarantee that the asymptotic approximation works well, so it is always
a good idea to get a sense of small-sample performance using a simulation (see
B.6).

1.4.1 Bias and Consistency
If E(θ̂) = θ then the estimator θ̂ is unbiased. This means the estimate is right on
average, but says nothing about how close we are on average, or whether we get
closer on average as we get more data. An estimator is consistent if the whole
distribution of the estimator shrinks toward the true value as the sample size gets
large, as shown in figure 1.6. A consistent estimator may be biased in any fi-
nite sample, but it gets closer on average with large enough samples. The term
“asymptotically unbiased” is used to mean either that the estimator is “consistent”
or that the bias shrinks toward zero with increasing sample size, which of course
is a different concept, so we will avoid the term.

Formally, if plim(θ̂) = θ then the estimator θ̂ is consistent (see section A.3.4
for more). The rate of convergence is also important; if we had two estimators
that converged at rates

√
N and N

1
3 , we would prefer the first estimator because it

converges at a faster rate—noting that 100 observations for the first estimator cor-
responds to 1,000 for the second. Of course in small finite samples, the asymptotic
rate of convergence is not strictly relevant; but we know we need much larger sam-
ples to get good results with an estimator that converges more slowly. See A.3.4
for more.

1.4.2 Efficiency and MSE
The variance of an estimator E(θ̂ − E(θ̂))2 is at least as important in most cir-
cumstances as bias or consistency. If one had to choose between the biased but
low-variance estimator θ̂ and the unbiased but high-variance estimator θ̃ shown in
figure 1.7, there are many circumstances where we would prefer θ̂, if large errors
are more costly than small errors.

The mean squared error of an estimator E(θ̂ − θ)2 is a common criterion of
how good an estimator is at getting an answer close to the truth, incorporating bias
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Figure 1.6: A biased but consistent estimator honing in on the true effect.
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and variance:

MSE(θ̂) ≡ E(θ̂ − θ)2 = V ar(θ̂) +
[
Bias(θ̂)

]2
The efficiency of an estimator θ̂ is the minimum possible variance for an un-

biased estimator divided by the actual variance of θ̂. The Cramér-Rao bound
(Cramér 1946, Rao 1945) can be used to prove that e(θ̂) ≤ 1 always, and an
estimator is efficient if e(θ̂) = 1.

Often, there is some kind of tradeoff between bias and variance, and trying to
minimize mean squared error is only one way to balance competing objectives.
Suppose we have a family of estimators where we can pick a parameter to get
low squared bias, or low variance, but not both, and the two are roughly inversely
related, e.g. b2v = 1 or v = 1/b2. The choice that minimizes mean squared
error is shown as the tangency between the possibility frontier v = 1/b2 and the
constant-MSE line v = 1 − b2 in figure 1.8. But if we want lower bias, or lower
variance, we would pick different points along the frontier. The choice depends
on whether we care more about being right on average, or large errors, i.e. how
costly it is to make large errors in any particular case.

Simulations (see also B.6) are often helpful in determining whether the small-
sample behavior of the estimator is acceptable in data that looks like yours (has
the given sample size and covariance structure). You can run a simulation for
some independent normally distributed X variables picked with drawnorm and
get one result, then run for some data that looks like yours and get a totally dif-
ferent result, so it makes sense to use data that looks like yours. It’s easiest to just
start with your data (use the data in the first line of a program to be called by
simulate, and modify it as needed. The modifications would be: you specify
the errors and the coefficients in each run of the simulation, so that you know the
true relationship between X and y, then you try to estimate it. The simulation
program specifies distributions for error terms by drawing all the error terms
needed, and when you repeat this process several thousand times, you can assess
the distribution of estimated coefficients around true coefficients, and rejection
rates (to assess power or rejection rates, you should use many thousands of sim-
ulations). Of course, this is proof by example, so no proof at all, really, but it is
convincing evidence nonetheless.

Simulations are especially helpful for assessing statistical power. We specify α
(the size of a test, or its significance level), the chance we reject a null hypothesis
that is true, but do not know β (the chance we fail to reject a null that is false,
which clearly depends on both the null and the true parameter value). Power,
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Figure 1.7: A consistent but high-variance estimator versus a biased but low-
variance estimator
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or one minus β, should be as close to one as possible for true parameter values
that are plausible, though eighty percent is often taken as an acceptable minimum
for power at the true parameter value (implying that one time in five we fail to
reject an incorrect null). The power curve graphs power as a function of the true
parameter value; it passes through α at the null and rises toward one on either side.
If we have several alternative estimators and associated tests, we can compare their
power curves—if one estimator’s power curve is higher than all others’ we say it
has Uniformly Maximum Power, which is clearly a good recommendation for that
estimator and test.

A useful summary measure of efficiency and power is the minimum detectable
effect of a design (the design includes the data collection and estimation strategy,
with a test at the end). Assume the null is that the effect of x on y is zero, and the
effect may be negative or positive in reality. The minimum detectable effect for a
given estimator and test usually answers the question, if the true effect of x on y
is b, then how small (in absolute value) does b have to be before the power falls to
eighty percent? We could also specify ninety percent, in which case the minimum
detectable effect is larger (we fail to detect small effects with higher probability as
the effect gets smaller, so if we want to detect small effects with higher probability
the effect must be larger). See the Stata commands sampsi and stpower for
more discussion.

1.5 Experiment and Quasi-Experiment
The models discussed so far assume that X is fixed by the researcher, as would be
the case with an experiment involving pea plants or assigning drug and placebo for
patients. The ideal situation is in fact where the X is randomly assigned to each
unit, so it cannot possibly be correlated with any characteristics not measured
in the data which would appear in the error term. In the case without random
assignment, it is useful to consider how the experiment would have been designed
had it been conducted.

1.5.1 Design of Experiments
There is an enormous literature on the design of experiments (Fisher 1926, Ney-
man 1923, Fisher 1935, Neyman et al. 1935, Cochran and Cox 1957, Cox 1958,
Rubin 1990, Rosenbaum 2002), but we just need to scratch the surface. In the sim-
plest experimental design, we randomly assign to each unit a single treatment, or
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control. Then the estimate of effect is simply the difference in mean outcomes be-
tween groups, obtained with a regression of outcome on a dummy for treatment.
We can generally get more efficient estimates, however, by regressing not only
on a dummy for treatment, but a variety of observable factors measured before
treatment was applied (“baseline” characteristics).

Lady Tasting Tea
A classic example of a simple experiment is a test of a lady’s claim that she

can tell by drinking it whether tea was made by pouring first milk and then tea
or pouring tea first and then milk. Fisher (1935) points out that if you randomly
present 4 pairs of cups of tea of each type, and she can identify the two types with
probability no better than chance, her chance of correctly identifying each is one
in seventy (the number of ways to present a sequence of eight cups of tea of two
types). So if she correctly identifies each, we reject the null that she can identify
the two types with probability no better than chance (since the p-value 1/70 is less
than 0.05), and if she misidentifies any, we fail to reject.

Factorial Designs
Fisher (1926) argued that a good experiment conditions on numerous observ-

able characteristics, to answer questions about the effect of treatments in many
different environments: “No aphorism is more frequently repeated in connection
with field trials, than that we must ask Nature few questions, or, ideally, one ques-
tion, at a time. The writer is convinced that this view is wholly mistaken. Nature,
he suggests, will best respond to a logical and carefully thought-out question-
naire.”

The idea is to divide each potential unit of analysis, or “whole plot” in an
agricultural setting, so that each possible combination of factors is treated; this is
called a Split Plot Design, and is often implemented using a Latin Square. A Latin
Square is a convenient way to randomly assign treatments to each combination
of factors. A design where some of the many possible interactions of factors is
omitted is called a “fractional factorial design.”

In a factorial design, the estimate of effect is simply the difference in mean
outcomes between treatment and control groups averaged across all combinations
of factors, obtained with a regression of outcome on a dummy for treatment, and
dummies for each level of each factor and interactions.

Randomizing treatment within strata of combinations of factors and control-
ling for the factors not only reduces the potential of an unlucky unbalanced distri-
bution of factors giving a poor estimate using the simple difference in means. It



46 CHAPTER 1. BASIC IDEAS AND METHODS

also reduces the variance of estimates, and increases our statistical power.

Compliance and ITT
The units assigned to treatment groups in a physical science experiment (e.g.

fertilizer in an argicultural experiment) typically cannot choose to leave their as-
signed group, but in a social or economic experiment, the units may “fail to com-
ply” with the experimental protocol. For example, if you assign someone to take
a training course, they may not show up, or someone who was assigned to the
control group may sneak in.

If compliance is less than perfect, the treatments can be redefined to measure
“assignment to treatment group Tj” rather than “received treatment Tj .” This is
called the “intention to treat” analysis, and measures the causal effect of assigning
someone to a treatment group, which is still randomly assigned, as opposed to the
treatment itself, which is no longer randomly assigned once individuals nonran-
domly fail to comply. To recover causal estimates of average treatment effects, we
can use instrumental variables techniques described in 4.2.

1.5.2 The Fundamental Problem of Causal Inference
We already saw the sources of the problem in the context of kidney stone treat-
ment (section 1.1.6) and education as a treatment (section 1.1.9), which is that we
don’t observe the counterfactual outcome; we don’t get to see what would have
happened had treatment cases not gotten treatment or control cases gotten treat-
ment. When treatment is not randomly assigned, we can’t estimate the average
effect of treatment as we would in an experiment.

The dominant model of causal inference draws on the work10 discussed in
1.5.1 and postulates that every unit under analysis has outcomes given any va-
riety of treatment we consider applying (just the two varieties “treatment” and
“control” in the simplest case), and that these outcomes depend only on the unit’s
characteristics, not what kind of treatment other units receive.

For any unit i we can write

δi(T versusC) = yi(T )− yi(C)

10The dominant model of causal inference is often called the Rubin Causal Model for Rubin
(1974) or the Neyman-Rubin Model (Neyman 1923, ?), or the Neyman-Rubin-Holland Model
(Holland 1986a), or sometimes the Roy Model (Roy 1951, Heckman and Honoré 1990, Heckman
2008), but I prefer the less loaded Counterfactual Causal Model; the crucial steps are the imagining
of counterfactual outcomes under any type of treatment, and seeing what effects can be identified.
See Pearl (2000) for relevant discussion and improvements.
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to measure the hypothetical effect of moving unit i from some treatment or level
of treatment C to some treatment or level of treatment T .

The “Fundamental Problem of Causal Inference” is that we only observe one
outcome—each unit either gets treatment or not. So we can never measure the
individual treatment effect δi in any real sense, but we can measure the average
treatment effect across individuals in this framework if we randomly assign treat-
ment to many individuals.

The average treatment effect (ATE) for all individuals i is

E [δi(T versusC)] = E [yi(T )]− E [yi(C)]

but for one subgroup we observe yi(T ) and for another yi(C). Let yT (T ) be the
mean outcome of the treated group given treatment T , yT (C) the mean outcome
of the treated group given treatment C, yC(T ) the mean outcome of the control
group given treatment T , and yC(C) the mean outcome of the control group given
treatment C. Then

E [δi(T versusC)] = pT [yT (T )− yT (C)] + (1− pT ) [yC(T )− yC(C)]

where pT is the proportion receiving treatment T . We observe sample means of y
for those who get treatments T and C so we can estimate [yT (T )] and [yC(C)], but
the other two are unobservable counterfactuals. However, if treatment is randomly
assigned, [yC(T )] = [yT (T )] and [yT (C)] = [yC(C)] so we have

R ⇒ E [δi(T versusC)] = [yT (T )]− [yC(C)]

(where R denotes random assignment of T and C) and we can estimate the causal
impact with the difference in sample means.

To make matters concrete, imagine δi is the same for all i but there is hetero-
geneity in levels, and units come in two types labeled 1 and 2:

Type E[y|T ] E[y|C] TE
1 90 40 50
2 70 20 50

The problem is that the treatment T is not applied with equal probability to each
type. For simplicity, suppose only type 1 gets treatment T and put a missing dot
in where we cannot compute a sample mean:

Type E[y|T ] E[y|C] TE
1 90 . ?
2 . 20 ?
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The difference in sample means overestimates the ATE (70 instead of 50); if only
type 2 gets treatment the difference in sample means underestimates the ATE (30
instead of 50).

Random assignment puts equal weight on each of the possible observed out-
comes:

Type E[y|T ] E[y|C] TE
1 90 . ?
2 . 20 ?
1 . 40 ?
2 70 . ?

and the difference in sample means is an unbiased estimate of the ATE. We can
even get estimates of the average treatment effect for each type:

Type E[y|T ] E[y|C] TE
1 90 . ?
1 . 40 ?

gives an estimate of 50 on average, as does

Type E[y|T ] E[y|C] TE
2 . 20 ?
2 70 . ?

assuming the random assignment is done properly. This was the essential point of
Fisher (1926), along with the assertion that stratified randomization by type pro-
duced lower variance estimates: randomly assigning treatment in cleverly chosen
strata gives more and better answers than any other method.

1.5.3 Internal and External Validity
The notions of unbiasedness or consistency (even efficiency or mean squared er-
ror, or power, or the unbiasedness or consistency of standard errors) address how
well we can identify an effect. These are concerned with the internal validity of
our inference, i.e. whether our hypothesis testing is likely to accurately measure
the quantity we intend. A separate question is how generalizable the results are—
this is the question of external validity (Campbell and Stanley 1963, Bracht and
Glass 1968). For example, an agricultural experiment at Rothamsted may produce
a very good estimate of the efficacy of a fertilizer in Hertfordshire but offer little
guidance on what to do in Iowa.
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An experiment where people (or other units that can be thought of as mak-
ing decisions) are randomly assigned to treatments faces a special problem. The
experiment, if done properly, can give an unbiased estimate of the causal effect
for those types of people who are willing to participate in an experiment. This
may quite a select group, and they may have a different average treatment effect
than the whole population of interest. Thus we cannot generalize to the whole
population without making a strong assumption about our experimental sample.
We face a similar problem in using many of the methods in this book, in that we
can identify some average treatment effect, but it may or may not be the average
treatment effect we sought to estimate.

It makes sense to try to get an estimate with good internal validity first. This
is like looking under the lamppost for your keys first; you may be pretty sure you
didn’t drop your keys there, and not finding your keys there does not prove they
are nowhere on the street, but at least you can be fairly confident of the outcome
of your search there before you wander off into the dark.

1.5.4 Common Sources of Biased Inference
The major problem is usually referred to as endogeneity. An explanatory vari-
able is called endogenous if it is correlated with the error, and exogenous if not.
The term endogenous applied to a variable originally meant “determined inside
a system of equations” so the variable appeared on the left hand side of at least
one equation, but now the term is used for the more general situation where an
explanatory variable is correlated with the error, which can arise due to selection,
omitted variables, measurement error, or other reasons. In fact, endogeneity is
only one source of biased inference; incorrect standard errors, model misspeci-
fication, and mistakes using data are probably much more important sources of
erroneous inferences. There is no general approach to avoid mistakes using data
(see Hamermesh (2007) for the best paradigm), but there is a literature on cracking
the endogeneity nut which is summarized in this book.

Selection
Selection bias is a term used to describe many settings, including picking a

sample of cases in a nonrandom way, for example including in a regression only
those cases with outcomes above some level (selection on the dependent variable)
or only those cases with (unobservable) errors above some level. The selection
problem we are discussing in this book is where the level of the treatment variable
has been selected by the individual, who can see components of the error term that
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we never can, and this induces a correlation between the treatment variable and
the error term, causing bias and inconsistency.

Omitted Variables
We can also treat the selection problem as a case of omitted variables, which

provides some useful intuition in many cases. For example, we might surmise that
the error ε is the sum of a random noise component u and a component observable
to individuals (and not to those of us who have the data) and is correlated with the
treatment variable due to choice or some other joint determination. Reformulating
as a case of omitted variables, perhaps with a unobservable (as opposed to merely
unobserved) omitted variable, we can nonetheless make some predictions from
theory to sign the likely bias.

The formula for omitted variable bias in linear regression is the useful here.
With a true model

y = β0 +XTβT +XUβU + u

where we regress y on the treatment variables XT but leave out XU (for example,
because we cannot observe it), the estimate of βT (the coefficients of interest) has
bias

E(β̂T )− βT = δβU

where δ is the coefficient of an auxiliary regression of XU on XT so the bias is
proportional to the correlation of XU and XT and to the causal effect of XU (the
omitted variables) on the outcome y. 11

Simultaneity
A simultaneous equations model assumes that the outcome y is the regressor

in another model, so it is apparent that it is not exogenous, and other variables
may also appear as outcome variables in some equations, so they are also seen
as endogenous. A classic example is supply and demand for a good, where price
affects the quantity demanded and the quantity demanded affects price (roughly).
We observe data on the intersection of different supply and demand functions
(across space or time), but both curves may be shifting around, so drawing a line
through these intersections tells us nothing about either function; figure 1.9 shows
a bunch of unobserved supply and demand schedules with slope one and minus
one).

11In nonlinear models, the estimate will be biased and inconsistent even when XT and XU are
uncorrelated, though Wooldridge (2002; p. 471) demonstrates that some quantities of interest may
still be identified under additional assumptions.
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Figure 1.9: Supply and demand curves observed only at uninformative crossings

Some of the techniques discussed below to address selection bias are also
used in the simultaneous equations setting. The literature on structural equations
models is extensive, and a system of equations may encode a very complicated
conceptual causal model, with many “causal arrows” drawn to and from many
variables. The present exercise of identifying the causal impact of some limited
set of variablesXT on a single outcome y can be seen as restricting our attention in
such a complicated system to just one equation, and identifying just some subset
of causal effects.

For example, in a simplified supply and demand system:

lnQsupply = eslnP + aTransportCost + εs

lnQdemand = edlnP + bIncome + εd

where price (lnP) is endogenously determined by a market-clearing condition
lnQsupply = lnQdemand, our present enterprise limits us to identifying only the
demand elasticity ed using factors that shift supply to identify exogenous shifts
in price faced by consumers (exogenous relative to the second equation’s error
εs), or identifying only the supply elasticity es using factors that shift demand to
identify exogenous shifts in price faced by firms (exogenous relative to the first
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equation’s error εs). We can use instrumental variables techniques (chapter 4) to
estimate these impacts.

See [R] reg3 for alternative approaches that can simultaneously identify pa-
rameters in multiple equations, and Heckman and Vytlacil (2004) and Goldberger
and Duncan (1973) for more detail.

Measurement Error
Measurement error in X variables can produce substantial bias as well. The

“classical” measurement error of most textbooks assumes a normally distributed
random noise term is added to the true value of one X variable, and in that case,
the estimator of the coefficient on that variable is biased toward zero (biased down
if the true coefficient is positive, and biased up if the true coefficient is negative).
However, most measurement error is not of that classical type, but involves some
kind of heterogeneous rounding or mean-reverting error, or worse, deliberate and
systematic misstatements. Instrumental variables techniques (chapter 4) can get
consistent estimate in many cases of measurement error, for example if we have
more than one measurement of the underlying variable. See also the special is-
sue of the Stata Journal (volume 3, number 4, available in PDF format online)
and associated materials discussed at http://stata.com/merror, and the help file of
ivpois on SSC for more discussion.

Missing Data
If cases are missing data on X or y, or both, they contribute nothing to our

estimates. Computing estimates excluding these cases is called “complete case
analysis” and introduces no bias unless the data is missing in a systematic way
(introducing selection). If cases are dropped from the analysis randomly condi-
tional on some set of variables Z, and we know something about the process, we
can always improve on estimates using a selection model (see section 4.6) or mul-
tiple imputation (Little and Rubin 2002). The idea of multiple imputation is to use
a reasonable model to impute all missing values with some randomness, and do it
M times, then use the variation across the estimates in the M now-complete data
sets to estimate the variation due to imputation.

Stata 11 introduced multivariate normal multiple imputation (see help mi
and the MI reference manual) and the ice and mim commands on SSC offer
multiple imputation via chained equations (Carlin et al. 2008).

How to choose M is as much art as science, but Royston (2004) and Royston
et al. (2009) discuss the impact of M on the precision of estimates. In general, it
makes sense to pick M as large as possible given time and memory constraints,
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though in some cases M equal to five or ten can produce good results.

Standard Errors
The focus in most papers and books on causal inference is getting point esti-

mates approximately right, by using a consistent estimator and a lot of data. But
inference has two big moving parts: the point estimate and the standard error. If
you get a point estimate exactly right and the standard error is way too big, you
may conclude there is no impact when there is one. More commonly, one gets
a good point estimate but the standard error is way too small, and a small and
statistically insignificant effect looks statistically significant instead.

A big part of this is that the model building part of inference is neglected and
there is no correction for multiple hypothesis testing. Equally important, depen-
dent errors may be neglected, and standard errors drastically understated. For
example, in clustered sampling, correcting for correlation of errors within cluster
by using a cluster-robust VCE estimator often increases standard errors by a factor
of two to four; anyone who fails to correct standard errors here is pretending they
have more information than they do, often with bad results.

There is also a question about survey weights in regression. Many economists
adopt the position that a well-specified model is efficiently estimated by OLS,
and weights only increase the variance of estimates and should therefore be ne-
glected. However, if there is a chance the model is even slightly misspecified,
using survey weights can substantially reduce erroneous inference (Binder and
Roberts (2003),Binder et al. (2004)). Using survey weights (called pweights in
Stata) and accounting for clustering should be considered mandatory for users of
survey data, which sacrifices some efficiency for a whole lot of robustness against
various mistakes.

Of course, survey weights are not free from error, either. They are constructed
by people, who make mistakes, and also are frequently designed for inferences
about means for the finite population, rather than inferences about relationships
in a hypothetical data-generating process that created the finite population and the
survey drawn from it. Nevertheless, using the weights and cluster information
and neglecting any finite population correction gets you very good estimates of
the true sampling error in a unstratified sample. In a stratified sample, Graubard
and Korn (2002) shows that the estimates of the variance of regression coefficients
need to be modified slightly, but it seems reasonable in many cases to neglect this
correction.

There are a number of unsolved problems in this realm, mostly because the
survey statisticians and econometricians don’t speak the same language or go to
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the same conferences. Much of survey statistics starts with an assumption that
there is a true correlation or conditional mean in a hypothetically observable pop-
ulation, and imagines taking larger and larger samples from the population to get
closer to the true answer. In this book, we start with the assumption that unob-
servable errors and treatment variables are correlated in the population so that the
true relationship between outcomes and treatment variables cannot be recovered
through simple regressions, even with all the population data in hand. Many of the
models considered in the book are not designed for use with complex survey data,
even though that is where they are applied most often. Similar problems apply
with bootstrap or jackknife approaches to computing standard errors in complex
survey data. In practice, weighting and accounting for clustering is probably good
enough to get correct inference.

Multiple Comparisons
Another problem with the size of tests is that no paper or project uses a single

hypothesis test. If we pick an alpha of five percent, accepting that we will reject a
null hypothesis of zero incorrectly when the true effect is in fact zero, then proceed
to look at a hundred tests, we will find about five significant effects where there are
none. In Stata, help mtest discusses several corrections to p-values that can
be done. Bonferroni’s method is the most common approach, where the p-value
required for rejection in n tests is alpha divided by n, so 100 tests with a five
percent nominal alpha would have a new criterion of p less than 0.0005 in order
to reject the null. The danger is nowhere more clear than in Bennett et al. (2009)
where the authors look for brain cell activity in salmon presented with pictures
of human faces, using functional MRI, and find signficant differences in activity
(typically taken as evidence of recognition activity). But their test subjects are
dead salmon, so any conclusion of a causal effect is guaranteed to be erroneous.
See Benjamini and Hochberg (1995) for more detail on multiple tests.

Programming Mistakes
In fact, the bias created by omitted variables, measurement error, and non-

randomly missing data, and mistaken inference due to improper standard errors,
probably pale in comparison to simple data management or programming mis-
takes. All too often, a bad merge, a data entry error, or just a typo (e.g. putting
less-than sign in place of a greater-than sign in a long list of code) dominate all
other errors. There is an appendix in this book on programming in Stata, and there
is also a stable of books on the Stata website devoted to better programming, but
there is no substitute to checking your code against someone else’s.
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A good way to start any major empirical project is by replicating some pub-
lished result using the same data and/or method you plan to use, though of course
there is no guarantee that you are not making the same mistake someone else did.
Hamermesh (2007) extols the virtues of publishing replications, and the exchange
between Rothstein (2007b) and Hoxby (2007) illustrates some costs and benefits
of publishing replications, but David Roodman is a better example of what I have
in mind. He has written two widely-used Stata programs (xtabond2 and cmp)
in an effort to replicate and extend papers he was interested in, and found very
interesting results (Easterly et al. 2004, Roodman and Morduch 2009).

1.5.5 Spillover and Heterogeneity of Effects
The assumption underlying most causal inference methods is that the treatment
does not have different effects depending on who gets it; for example, the ef-
fect of college on earnings is the same regardless of who or how many people
go to college. This strong form of the Stable Unit Value Treatment Assumption
(SUTVA) is clearly very hard to satisfy. The people you go to college with can af-
fect your future earnings, and if fewer people go to college, those who do will earn
more. In general, the effect of treatment often “spills over” onto other units (both
treatment and control cases) and the spillover can be a major obstacle to using
the techniques discussed in the rest of this book. However, sometimes changing
the question to which a causal answer is sought can help circumvent the problem.
For example, if you are worried that a treatment applied to students in a class, say
hours of a particular type of instruction, may spill over to other class members,
you can change your unit of analysis and consider treatments applied to the class
(albeit at the student level). See also Rubin (1986) for an excellent discussion of
violations of the SUTVA, and Holland (1986b).

Many estimators also assume the effect of a treatment is the same regardless
of who receives it. It seems likely that in most cases, the effect of treatment is het-
erogeneous, either producing different increases in mean outcomes by group, or
producing different gains for each individual. The first is relatively easy, since we
can nearly always estimate separately by subgroup and test whether the estimates
are the same (using suest, for example). Estimating with individual heterogene-
ity of effects is substantially harder, and requires extremely strong distributional
assumptions. Note that this is not the individual heterogeneity of section 1.3.2,
which is heterogeneity in the constant term, but heterogeneity in the coefficient
on a treatment variable of interest, which makes it very hard to estimate an av-
erage effect without strong assumptions (of course, the assumption that everyone
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gets the same effect from treatment is also strong).

1.5.6 Bounds
Instead of getting a consistent point estimate of the effect of X on y, or an interval
that defines a plausible range for the effect given a large enough dataset, under
some plausible assumptions, we could adopt another approach. Often, we can say
with a very high degree of confidence that the effect cannot be larger than one
estimate and cannot be lower than another, implying that the true effect is inside
those bounds.

The accessible exposition by Manski (1995) demonstrates how a causal effect
can be bounded under very unrestrictive assumptions, and then the bounds can be
narrowed under more restrictive parametric assumptions. Lee (2009) advocates
another very useful method of bounding treatment effects, used in Leibbrandt and
McCrary (2005).

A related method to describe the sensitivity of estimates to violations of as-
sumptions is described by Rosenbaum (2002), who provides a wealth of detail on
formal sensitivity testing for matching methods (see 2.2.1).

Given how sensitive the quasi-experimental methods are to assumptions (se-
lection on observables, exclusion restrictions, exchangeability, or various other
assumptions described in subsequent chapters), some kind of sensitivity testing is
order no matter what method is used.



Chapter 2

Matching and Reweighting Methods

The basic idea behind matching models is to compare outcomes only for individ-
uals who are otherwise identical, except one gets treatment and one doesn’t (or
the two get different levels of treatment). In the simplest case, we can make com-
parisons for groups of individuals who have different treatment status but exactly
the same values for every other possible covariate, which is equivalent to a fully
saturated regression1 and is known as exact matching.

In the case of a single discrete set of treatmentsXT we wish to compare means
or proportions much as we would in an experimental setting. The simplest case is
where y = XTβ +XCγ + ε and we are interested in the effect of a dummy treat-
ment variable XT (observations are either in the treatment or control groups). We
may be able to include indicators and interactions for factors (in XC) that affect
selection into the treatment group (defined by XT = 1), to estimate the impact of
treatment within groups of identical XC using a fully saturated regression. But if
there are even a few variable with many different possible values, the number of
required dummies will quickly make estimation infeasible. With continuous vari-
ables, exact matching is typically impossible. Matching cases that are similar is
still feasible, but with many observable variables, we are confronted with a “curse
of dimensionality” where the number of directions in which to search for a good
match makes matching too difficult.

There are also matching estimators (Cochran and Rubin 1973, Stuart and Ru-
bin 2007) which compare observations with like XC by pairing observations that
are close by some metric; see also Imai and van Dyk (2004) for generalizations of
matching estimators. A set of alternative approaches involve reweighting so the

1A fully saturated regression includes indicator variables for every possible value of each co-
variate and their interactions, so allows maximal flexibility in the specification.
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distributions of XC are nearly identical for different groups.
We can let similar be defined by some measure of distance between covariate

patterns, typically Mahalonobis distance, and match on distance alone, but Rosen-
baum and Rubin (1983) suggest that all we need is the probability of treatment.
Rosenbaum and Rubin (1983) showed that comparing individuals with like prob-
abilities of treatment (also called the propensity score) is just as good as exact
matching, which greatly reduces the dimensionality of matching to just one—the
propensity score lies strictly between zero and one, so we just need to match in
the unit interval. If we don’t know the probability of treatment, we can estimate it
conditional on the X variables, and do just as well as if we knew the true proba-
bility, or even better (Hirano et al. 2003).

Matching or reweighting approaches can give consistent estimates of a va-
riety of average treatment effects, under assumptions that the selection process
depends on observables, and that the model used to match or reweight is a good
one. The standard assumption for selection on observables is called the condi-
tional independence assumption, or unconfoundedness, which requires that the
potential outcomes are independent of treatment conditional on a set of observ-
able controlvariables XC ; but see Frölich (2007). A weaker assumption that only
the potential outcome under no treatment (XT = 0) is independent of treatment
conditional on a set of variables XC allows us to identify the average effect of
treatment on the treated (ATT), because we can treat outcomes averaged over
some cases that got no treatment as the counterfactual outcome for treated cases.
The second crucial assumption is that the propensity score lies strictly between
zero and one, called the “overlap” assumption, or sometimes the assumption that
the treatment and control groups’ distributions of propensity scores have identi-
cal supports. The combination of unconfoundedness and overlap is called “strong
ignorability” in Rosenbaum and Rubin (1983).

In some sense, these estimators push the problems associated with observa-
tional data from estimating the effect of XT on y down onto estimating the effect
ofXC onXT . For this reason, estimates based on reweighting or matching are un-
likely to convince someone unconvinced by standard regression results. Selection
on observables is not the type of selection most critics have in mind.

Still, comparing standard regression results and results from matching can pro-
vide very good information about the extent of selection bias due to selection on
observables, and relaxes the functional form assumption required for regression.
If we can believe that the extent and direction of selection bias due to selection on
unobservables is similar (due to theory about the process involved), then at least
we have a notion about plausible bias.



2.1. NEAREST NEIGHBOR MATCHING 59

2.1 Nearest Neighbor Matching
Nearest Neighbor Matching pairs observations in the treatment and control groups
and computes the difference in outcome y for each pair, then the mean difference
across pairs. The Stata implementation nnmatch was described by Abadie et al.
(2004). Imbens (2004) covered details of Nearest Neighbor Matching methods,
and provided useful examples.

The typical way to pick a match in Nearest Neighbor Matching is to compute
a distance between vectors of observable exogenous variables; call these Z and
suppose some of them also have a direct impact on outcomes y. We can compute
the distance of one observation z0 from another z1 as a quadratic form2 in Z given
by (z0−z1)W (z0−z1)′ and letW be a function of the standard deviations of each
variable, so we measure deviations in standard deviation units. This is called the
Mahalanobis distance. Other metrics are also offered in nnmatch, and the prop-
erties of each discussed in Abadie et al. (2004). Then we pick the control group
observation with the minimum distance from a given treatment case as the esti-
mate of a counterfactual outcome for that case, or possibly several observations;
see also B.5.5.

The downside to Nearest Neighbor Matching is that it can be computation-
ally intensive, unless some restrictions are imposed on the problem. With many
observable variables available to match on, taking on many values, the “curse
of dimensionality” makes the problem of finding close matches a very hard one.
Also, bootstrap standard errors are infeasible owing to the discontinuous nature of
matching (Abadie and Imbens 2006). The approach also does not easily general-
ize to a continuous treatment variable, or more than one treatment.

2.2 Propensity score matching
Propensity score matching essentially estimates each individual’s propensity to
receive a binary treatment (via a probit or logit) as a function of observables
and matches individuals with similar propensities. As Rosenbaum and Rubin
(1983) showed, if the propensity were known for each case, it would incorpo-
rate all the relevant information about selection, and propensity score matching
could achieve optimal efficiency and consistency. In practice, the propensity must
be estimated, but this is not a serious problem. More importantly, selection is
usually not only on observables, so the estimator will be biased and inconsistent.

2See A.1.4 for definitions.
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Morgan and Harding (2006) provide an excellent overview of practical and
theoretical issues in matching, and comparisons of nearest neighbor matching
and propensity score matching. Their expositions of different types of propen-
sity score matching, and simulations showing when it performs badly, are partic-
ularly helpful. Stuart and Rubin (2007) offer a more formal but equally helpful
discussion of best practices in matching.

Typically, one treatment case is matched to several control cases, but one-to-
one matching is also common, and may be preferred (Glazerman et al. 2003).
One Stata implementation psmatch2 (Leuven and Sianesi, 2003) is available
from SSC (ssc desc psmatch2) and has a useful help file (its predecessor
psmatch is described at http://www.stata.com/meeting/7uk/sianesi.pdf). There
is another Stata implementation described by Becker and Ichino (2002) (findit
pscore in Stata). psmatch2 will perform one-to-one or match k neighbors
(sampling the nearest neighbor or randomly within an allowable range, with or
without replacement) using radius, kernel, local linear regression, or Mahalanobis
matching (a variety of distance concepts).

Propensity score methods typically assume a common support, i.e. the range
of propensities to be treated is the same for treated and control cases, even if the
density functions have quite different shapes. In practice, it is rarely the case
that the ranges of estimated propensity scores are the same, but they do nearly
always overlap, and generalizations about treatment effects are often limited to
the smallest connected area of common support.

Often a density estimate below some threshold greater than zero defines the
end of common support; see citetHIT1997 for more discussion. This is because
the common support is the range where both densities are nonzero, but the esti-
mated propensity scores take on a finite number of values, so the empirical den-
sities will be zero almost everywhere. Generally, we need to use a kernel density
estimator like kdensity to obtain smooth estimated densities of the propensity
score for both treatment and control groups, but then areas of zero density will
have positive density estimates. Thus some small value f0 is redefined to be ef-
fectively zero, and the smallest connected range of estimated propensity scores λ̂
with f̂(λ̂) ≥ f0 for both treatment and control groups is used in the analysis, and
observations outside this range are discarded.

Regardless of whether the estimation or extrapolation of estimates is limited
to a range of propensities or ranges of XC variables, the analyst should present
evidence on how the treatment and control groups differ, and which subpopulation
is being studied. The standard graph here is an overlay of kernel density estimates
of propensity scores for treatment and control groups, easy in Stata with twoway

http://www.stata.com/meeting/7uk/sianesi.pdf
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kdensity.
The real problem with matching is that the variance of matching estimators is

often very high, but the estimated standard errors often do not correctly account
for the variance. If you randomly sort your data and match many times, your
variance of estimates will often be much larger than standard errors would seem
to suggest; however, these replications or bootstrap replications cannot easily be
used to better estimate a standard error. Also, it is far from straightforward to in-
corporate sample weights or other survey design features, though these are easily
incorporated in a nearly equivalent propensity score reweighting estimator.

2.2.1 Sensitivity Testing
Matching estimators have perhaps the most detailed literature on formal sensi-
tivity testing. Rosenbaum (2002) provides a comprehensive treatment of formal
sensitivity testing. Rosenbaum bounds on treatment effects may be constructed
using psmatch2 and rbounds, a user-written command due to DiPrete and
Gangl (2004), who compare Rosenbaum bounds in a matching model to IV esti-
mates. sensatt by Nannicini (2007) and mhbounds by Becker and Caliendo
(2007) are additional Stata programs for sensitivity testing in matching models.

Rosenbaum’s “gamma method” describes the sensitivity of the estimate in
terms of how large an effect unobserved covariates would need to have to negate
the test result we observe. For example, in a model using the estimated proba-
bilities of treatment conditional on some control variables or “propensity scores”
(discussed in the next chapter), if we reject the null hypothesis of zero effect at the
five percent level with a p-value of 0.01, a five-fold change in the p-value would
negate our result. The gamma measure Γ Rosenbaum proposes is the bound on
the odds ratio of propensity scores for units with the same covariates (but different
unobserved covariate) that would produce that required change in the p-value:

1

Γ
<

p̂i(Xi)/(1− p̂i(Xi))

p̂j(Xj)/(1− p̂j(Xj))
< Γ

for units i and j. A Γ of 2 implies that the odds of assignment to the treatment
group would have to double or halve based on some unobservable in order to
negate our conclusions; a Γ of 4 implies that the odds of assignment to the treat-
ment group would have to quadruple or quarter based on some unobservable vari-
able. A larger Γ thus implies more robustness against failures of assumptions, and
the metric is more or less comparable across a variety of settings. Rosenbaum is
in the process of extending this method to other estimation techniques.
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2.3 Reweighting
The propensity score can also be used to reweight the control group so the dis-
tribution of observables XC looks the same as in the treatment group. The basic
idea is to use a probit or logit or semiparametric regression of treatment on
XC to estimate the conditional probability λ̂ for each observation of being in the
treatment group and to use the odds λ̂/(1− λ̂) as a weight for observations in the
control group. This is like inverting the test of randomization used in experimental
designs to make the group status look as if it were randomly assigned.

As Morgan and Harding (2006) point out, all the matching estimators can also
be thought of various reweighting schemes whereby treatment and control obser-
vations are reweighted to allow causal inference on the difference in means. Note
that a treatment case i matched to k cases in an interval, or k nearest neighbors,
contributes yi − k−1∑k

1 yj to the estimate of a treatment effect, and one could
just as easily rewrite the estimate of a treatment effect as a weighted mean differ-
ence. With propensity score weighting, instead of a few observations in the control
group serving as the counterfactual for a given treatment case, the whole control
group (suitably reweighted) serves as the counterfactual. Busso and McCrary
(2009b) show that reweighting estimators often perform better than matching.

Researchers typically ignore the fact that weights are estimated, which may
not be a bad idea. It turns out that we can actually do better throwing away in-
formation on the true probability of treatment and estimating the probability of
treatment. Hirano et al. (2003) show that nonparametric estimation of the proba-
bility of treatment can achieve maximal efficiency, but simulations not shown here
demonstrate that parametric estimates fare substantially better than using the true
probability of treatment, even when the parametric model is using the wrong fam-
ily of distributions. In the end, it may be the case that estimated standard errors
are reasonably conservative already with propensity score reweighting.

The reweighting approach is particularly useful in combining matching-type
estimators with other methods, e.g. fixed-effects regression. After constructing
weights w = λ̂/(1 − λ̂) (or the product of weights w = w0λ̂/(1 − λ̂) where
w0 is an existing weight on the data used in the construction of λ̂) that equalize
the distributions of XC , other commands can be run on the reweighted data, e.g.
areg for a fixed-effect estimator.

Note that we have discussed calculating weights only for control group, imply-
ing that the weight equals one for observations receiving treatment (e.g. those who
completed college), i.e. those having tr==1. It is also advisable, however, to
scale weights within the treatment and control groups so that the reweighted pro-
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portions are similar to those observed in the original sample. In fact, the reweight-
ing of the control group to resemble the treatment group is only one of several
plausible reweighting schemes, and a regression of outcomes on a treatment in-
dicator using this weight can be considered an estimate of the average treatment
effect on the treated (ATT).

2.3.1 Alternative weighting schemes
A simple way to estimate probability of treatment (suppose this is measured by a
dummy tr) conditional on a group of observable variables z* (all their names
start with z) is to use the proportion receiving treatment in each distinct combina-
tion, like so:

egen g=group(z*)
egen _ps=mean(_tr), by(g)

but a more common method is to use a parametric model, for example:

logit _tr z*
predict _ps if e(sample)

If we have estimated the probability of treatment in a variable ps, a command
to generate weights can be written

g w=cond(_tr,1,_ps/(1-_ps))

A rescaled weight to approximately preserve proportions in treatment and control
would be
su _tr
g w1=cond(_tr,r(mean)/(1-r(mean)),_ps/(1-_ps))

noting in passing that multiplying treatment weights by p/(1-p) where p is the
proportion of the sample receiving treatment, or multiplying control weights by
(1-p)/p, or multiplying treatment weights by p and control weights by (1-p), all
produce identical results if weights are themselves rescaled to sum to N (note
that Stata internally rescales aweights to sum to N). The weight λ̂/

(
1− λ̂

)
for

untreated “control” observations reweights the distribution of observable charac-
teristics included in the logit or probit model to be like that of the treated
group. A weighted regression of outcome on treatment is thus a comparison of
means across treatment and control groups, but the control group is reweighted to
represent the average outcome that treatment group would have exhibited in the
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absence of treatment. That is, every control group observation is contributing to
an estimate of the mean counterfactual outcome for all treated observations (rather
than specific observations being matched).

An alternative weighting scheme of the form

su _tr
g w2=cond(_tr,(1-_ps)/_ps*r(mean)/(1-r(mean)),1)

reweights the distribution of observables in the treatment group to be like that
of the control group. A comparison of means across (reweighted) treatment and
control groups, for example using a weighted regression of an outcome variable
on the treatment indicator, is then an estimate of the average treatment effect on
the controls (ATC). The treatment group is reweighted to represent the average
outcome that control group would have exhibited in the presence of treatment.

One method of computing an estimate of the average treatment effect for the
population (ATE) is to take the weighted mean of these two estimates, with the
weight attached to the ATT equal to the proportion receiving treatment and the
weight attached to the ATC equal to one minus the proportion receiving treatment.

An alternative estimate of the ATE is available. First, note that the outcome
under treatment for the whole population, i.e. the mean outcome if every unit
received treatment, can be estimated by a weighted mean of outcomes in the treat-
ment group with weights 1/λ̂ (Brunell and DiNardo 2004). Similarly, the out-
come under control for the whole population, i.e. the mean outcome if every unit
received no treatment, can be estimated by a weighted mean of outcomes in the
control group with weights 1/

(
1− λ̂

)
. The weights for both groups are given by

su _tr
g w3=cond(_tr,1/_ps*r(mean)/(1-r(mean)),1/(1-_ps))

and an ATE estimate is then simply a weighted comparison of means (e.g. via
a regression). One problem that is exacerbated in this scheme is measurement
error in the estimated propensity score: as DiNardo (2002) writes: “small errors
in estimating ρ(x) can produce potentially large errors in the weights. Since the
weight is a nuisance parameter from the viewpoint of estimating a density or a
specific moment of the distribution, this is not a straightforward problem.”

A fourth reweighting scheme

g w4=cond(_tr,(1-_ps),_ps)

minimizes the observable distance between treatment and control groups in the
sense that a test statistic for the difference in means (the Hotelling test) is zero
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(and the weighted groups are of equal size, so the mean of the treatment indi-
cator is one half), but a difference in means using this weight is not so readily
interpreted as an average treatment effect. Nevertheless, simulation evidence not
presented here indicates it may be very effective (in the sense of having small bias
and MSE) in estimating the average treatment effect, especially when estimated
probabilities are near zero or one.3 It also exhibits good robustness to omitted
variables in the selection equation (the first stage logit or probit). The rea-
son for this, shortly, is that the weights are linear in estimated probabilities so they
don’t “explode” near zero and one, but the ratio of the weights at each estimated
probability is still correct, so the relative weights produce ATE estimates that are
fairly robust.

See Lunceford and Davidian (2004) and Busso and McCrary (2009a) for ad-
ditional discussion of construction of weights and rescaling, including an asymp-
totically variance-minimizing choice for one class of designs.

2.3.2 Result of reweighting
The results of reweighting are clear in a Hotelling test (help hotelling) or an
equivalent linear discriminant model (the common test of sample balance in an
experiment, where sampling is known to be random, but researchers still want to
check they did not get an unlucky imbalance in treatment and control groups).
The example in Exhibit 2.3.34 using hotelling and regress give identical F
statistics, but the regress approach allows relaxing of the assumption of equal
variance across groups via the vce(robust) option.

Exhibit 2.3.3 The effect of reweighting on a test of balance.

webuse nlswork, clear
keep if year==77
local x "collgrad age tenure not_smsa c_city south nev_mar"
hotelling ‘x’, by(union)
regress union ‘x’

3Note that estimated propensities near zero or one represent a possible violation of the condi-
tion required for matching or reweighting that the probability of treatment is bounded away from
zero and one. In this case, it is advisable to restrict to a subpopulation in which estimated propen-
sities are never near zero or one and reestimate. The densities of propensities near the zero and one
boundaries should be estimated using kdens, with boundary correction options, available from
SSC.

4Note that this extract of the National Longitudinal Survey of Young Women 14-26 years of
age in 1968 does not include the sample weights, but in general we would prefer to convolve the
weights by multiplying our reweighting factor by the sample weights.
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regress union ‘x’, vce(robust)
logit union ‘x’
predict _ps if e(sample)
summarize union if e(sample)
local p=r(mean)
generate w3=cond(union,‘p’/_ps/(1-‘p’),1/(1-_ps))
hotelling ‘x’ [aw=w], by(union)
regress union ‘x’ [aw=w]
regress union ‘x’ [aw=w], vce(robust)
regress ln_wage union ‘x’ [aw=w3], vce(robust)

Note that the F statistic drops from 20 to 0.1 after reweighting (18 to 0.1 using
heteroskedasticity-robust statistics), and the weighted means of each individual
variable look much closer. The last regression of log(wage) on union using the
inverse probability weights based on propensity scores gives an estimate of the
effect of union membership on wages, over both union and nonunion workers,
suggesting that an individual would earn fourteen percent more in 1977 as a union
member than as a nonunion worker, on average. Using weights generated by

g w1=cond(union,‘p’/(1-‘p’),_ps/(1-_ps))
regress ln_wage union ‘x’ [aw=w1], vce(robust)

instead gives an estimate of the effect of union membership on wages for union
members, suggesting that union members earned fourteen and one half percent
more in 1977 than they would have as nonunion workers.

What is not clear from hotelling or regress is that even if the means
of X variables are equal in the reweighted sample, that does not imply that their
distributions are similar. As long as treatment status can be inferred from higher
moments of the X variables, we have not fully controlled for the observable dif-
ferences across treatment and control groups. In practice, however, reweighting
to make means match seems to make the distributions of observables very similar,
for the same reason that matching on the propensity score does.

The difference in distributions is most cleanly observable in the distribution
of estimated propensity scores, but can be seen in the individual variables (e.g.
tenure in the example in 2.3.4; note that kdens is available from SSC).

Exhibit 2.3.4 The effect of reweighting on the distribution of variables.

webuse nlswork, clear
keep if year==77
local x "collgrad age tenure not_smsa c_city south nev_mar"
logit union ‘x’
predict _ps if e(sample)
kdens _ps if union, bw(.03) ll(0) ul(1) gen(f1 x) nogr
kdens _ps if !union, bw(.03) ll(0) ul(1) gen(f0) at(x) nogr
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label var f0 "pdf of propensities for unweighted control obs"
label var f1 "pdf of propensities for unweighted treatment obs"
line f1 f0 x, leg(col(1)) name(unwtd, replace)
summarize union if e(sample)
local p=r(mean)
generate w3=cond(union,‘p’/(1-‘p’),_ps/(1-_ps))
kdens _ps if union [aw=w3], bw(.03) ll(0) ul(1) gen(g1 x1) nogr
kdens _ps if !union [aw=w3], bw(.03) ll(0) ul(1) gen(g0) at(x1) nogr
label var g0 "pdf of propensities for reweighted control obs"
label var g1 "pdf of propensities for reweighted treatment obs"
line g1 g0 x1, leg(col(1)) name(rewtd, replace)
kdens tenure if union [aw=w3], bw(1.5) ll(0) gen(td) at(tenure) nogr
label var td "Density for union members"
kdens tenure if !union [aw=w3], bw(1.5) ll(0) gen(cd) at(tenure) nogr
label var cd "Density for C reweighted to resemble T"
line td cd tenure, sort leg(col(1))

Matching on the propensity score ensures the distributions of estimated propen-
sity scores are virtually identical in (matched) treatment and control groups, es-
pecially if matching models are iterated until balance is achieved, but reweighting
does not. For example, if the distribution of some variable (including propensity
scores) is bimodal in the control group and single-peaked in the treatment group,
those properties will typically still be observable in the reweighted data. Never-
theless, reweighting achieves much of the balancing achievable via matching on
the propensity score.

The fourth reweighting scheme achieves the smallest difference in means, with
an F statistic as close to zero as is feasible, but the distributions of observable
characteristics and estimated propensity scores are very similar under all these
approaches to reweighting. The fourth reweighting scheme is less theoretically
justifiable, so one of the other choices is preferable, depending on what kind of
inferences are sought.

See Iacus et al. (2008) for an alternative matching method that controls, up
to specified levels, “for all imbalances in central absolute moments, comoments,
coskewness, interactions, nonlinearities, and other multidimensional distributional
differences between treated and control groups.”

We can also match or reweight when the treatment takes on many values (not
just treatment and control) using the generalized propensity score approach of Hi-
rano and Imbens (2004), described by Bia and Mattei (2008). The generalized
propensity score r(t|x) is the density of treatment conditional on X = x, esti-
mated as r̂(t, x).
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2.3.5 Uses of reweighting
With a propensity-based reweighting approach, we can compare not only mean
outcomes, but entire distributions. For example, reweighting is at the heart of
the method for comparing distributions proposed by DiNardo et al. (1996). The
paradigmatic example of that approach uses two years of data, estimates the prob-
ability that an observation is in the first year or the second, then reweights the sec-
ond year’s observations by λ̂/

(
1− λ̂

)
so that the distributions are nearly equiv-

alent across the two years. Changes in means or distributions (of some outcome
variables) in the reweighted data are then interpreted as estimates of change had
the means of the X variables not changed over time.5 Firpo (2007) gives an ap-
proach for efficient estimation of quantile treatment effects.

A similar method could be applied to estimate the proportion of a wage gap ob-
served across men and women or white and nonwhite workers that are attributable
to characteristics, along the lines of the Blinder (1973) and Oaxaca (1973) de-
composition method. That decomposition method, described by Jann (2008), at-
tributes observed differences in an outcome y both to differences in exogenous
variables XC and differences in the associations between XC and y. The gen-
eral approach is most useful for comparing two distributions where the binary
variable defining which group an observation belongs to is properly considered
exogenous, e.g. sex or calendar year. The reweighting approach leads to a whole
class of weighted least squares estimators, and is connected to the techniques de-
scribed by DiNardo et al. (1996), Autor et al. (2005), and Machado and Mata
(2005). These techniques are also related to various decomposition techniques in
Yun (2004; 2005a;b), Gomulka and Stern (1990), Juhn et al. (1993), and Bauer
and Sinning (2008) and Sinning et al. (2008). The dfl, jmpierce, and oaxaca
programs on SSC are a few user-written Stata implementations for decomposition
techniques. The connections among these methods are discussed by e.g. DiNardo
(2002) and Lemieux (2002).

The reweighting approach also extends easily to a polychotomous categorical
variable, by considering the analogy to the DiNardo et al. (1996) approach applied
to multiple years. For example, each subsequent year’s data can be reweighted
to have observable characteristics similar to the first year, or each year can be
reweighted to match some other base year’s distribution. In the same way, ob-
servations receiving various levels of treatment can be reweighted to match some
base category. Of course, the choice of base category may affect the interpretation

5See also Altonji et al. (2008) for a paper dealing not only with differences in distributions in
samples, but sample attrition and missing values.
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of results. Extensions of the reweighting approach to the case of a continuous
treatment are also possible using the generalized propensity score approach of
citetHiranoImbens2004, described by Bia and Mattei (2008).

2.4 Examples
Imagine the outcome is wage and the treatment variable is union membership.
One can imagine reweighting union members to have distributions of education,
age, race/ethnicity, and other job and demographic characteristics equivalent to
nonunion workers (or a subset of nonunion workers). One could compare oth-
erwise identical persons within occupation and industry cells using a regression
approach or nnmatch with exact matching on some characteristics.

An example comparing several regressions with propensity score matching is
given in Exhibit 2.4.1 where the estimated union wage premium is about 13%
in a regression, but about 15% in the matching estimate of the average benefit
to union workers (the ATT) and about 10% on average for everyone (the ATE).
The reweighted regressions give different estimates: for the more than 70% of
individuals who are unlikely to be unionized (propensity under 30%), the wage
premium is about 9%, and for the full sample, it is about 18%.

Exhibit 2.4.1 An example of reweighting and matching.

webuse nlswork, clear
xi i.race i.ind i.occ
loc x "union coll age ten not_s c_city south nev_m _I*"
reg ln_w union
reg ln_w ‘x’
g u=uniform()
sort u
psmatch2 ‘x’, out(ln_w) ate
g w=cond(_tr,1,_ps/(1-_ps))
reg ln_w ‘x’ [pw=w] if _ps<.3
reg ln_w ‘x’ [pw=w]

Arguably none of these estimates of wage premia correspond to a readily spec-
ified thought experiment, such as “what is the estimated effect on wages of being
in a union for a randomly chosen individual?” (the ATE) or “what is the estimated
effect on wages of being in a union for an individual just on the margin of be-
ing in a union or not?” (the LATE). DiNardo and Lee (2002) offer a much more
convincing set of causal estimates of the LATE using an Regression Discontinuity
design.
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We could also have estimated the wage premium of a college education by
simply putting coll in the place of union (to find a wage premium of 25% in a
regression or 27% using psmatch2).

We could also use data from Card (1995) on education and wages:

Exhibit 2.4.2 Another example of matching.

use http://pped.org/card, clear
g byte coll=educ>15
loc x "coll age exper* smsa* south mar black reg662-reg669"
reg lwage ‘x’
psmatch2 ‘x’, out(lwage) ate

to find a college wage premium of about 29% using a regression or about 30%
using psmatch2. We return to this example in the next chapter using an Instru-
mental Variables method.



Chapter 3

Panel Methods

If an omitted variable can be measured, or proxied by another variable, then an or-
dinary regression may yield an unbiased estimate. In the case where ordinary least
squares is unbiased, or at least consistent, it would nearly always be preferred,
since it produces the most efficient estimates (ignoring issues around weights or
errors that are not i.i.d.). The measurement error entailed in a proxy for an un-
observable could actually exacerbate bias, rather than reducing it, however. In
addition, one is usually concerned that cases with differing XT may differ in
other ways even conditional on all other observables XC (“control” variables).
Nonetheless, a sequence of ordinary regressions that add or drop variables can be
instructive as to the nature of various forms of omitted variable bias in the data at
hand.

The idea of panel methods is to use individuals as their own controls, for exam-
ple by observing units before and after they get treatment. A complete discussion
of panel methods would not fit in any one book, but the [XT] manual contains a
panoply of estimation options and references for further reading.

The basic idea can be usefully illuminated with one short example using linear
regression. Suppose we have a model of the form

y = β0 +XTβT +XUβU + ε

where we do not observe XU . Suppose the omitted variables XU vary only across
groups, where group membership is indexed by i, so a representative observation
can be written:

yit = β0 +XT
itβT + ui + εit

where ui = XU
i βU . Then we can eliminate the bias arising from omission of XU

71
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by differencing:

yit − yis = (XT
it −XT

is)βT + (εit − εis)

using various definitions of s.
The idea is to use an individual i as its own control group by including infor-

mation from multiple points in time t. In fact, the second dimension of the data
indexed by t need not be time, but it is a convenient viewpoint.

3.1 Fixed Effects (FE), First Difference (FD), and
Long Difference (LD)

A fixed-effect (FE) model such as xtreg, fe i(id) or areg, a(id) ef-
fectively subtracts off the within-i mean values of each variable, so for example
XT
is = X̄T

i = 1
Ni

∑Ni
s=1X

T
is, and the model

yit − ȳi = (XT
it − X̄T

i)βT + (εit − ε̄i)

can be estimated via OLS. This is also called the “within estimator” and is equiv-
alent to a regression that includes an indicator variable for each group i, allowing
for a different intercept term for each group.

An alternative to the FE model is to use the first difference (FD), i.e. s = (t−1)
or

yit − yi(t−1) = (XT
it −XT

i(t−1))βT + (εit − εi(t−1))

which is just reg d.y d.x in tsset data, or xtivreg2 y x, fd (Schaf-
fer and Stillman 2007), which offers additional standard error (SE) corrections
beyond cluster and robust.

A third option is to use the long difference (LD), keeping only two observa-
tions per group. For a balanced panel, if t = b is the last observation and t = a is
the first, the model is:

yib − yia = (XT
ib −XT

ia)βT + (εib − εia)

producing only one observation per group (the difference of the first and last ob-
servations).

Figure 3.1 shows the interpretation of these three types of estimates by show-
ing a single panel’s contribution to the estimated effect of an indicator variable
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that is one for all t > 3 (t in 0, ..., 10) and zero elsewhere, e.g. a policy that comes
into effect at some point in time. The FE estimate compares the mean outcomes
before and after; the FD estimate compares the outcome just prior to and just after
the change in policy; and the LD estimate compares outcomes well before and
well after the change in policy.

FE=1

FD=.5

LD=1.2

0

.5

1

1.5

 

Pre Post  

 

Figure 3.1: A single panel’s contributions to various estimates

Clearly, different assumptions about the error process apply in each case, in
addition to assumptions about the speed with which XT affects y, and the FD
and LD models require an ordered t index (such as time). The cluster option
used above should be considered nearly de rigeur in panel models, to allow for
errors that may be correlated within group, and not identically distributed across
groups. The performance of the cluster-robust estimator is quite good with 50 or
more clusters, or fewer if the clusters are large and balanced (Nichols and Schaffer
2007). In the LD case, the cluster option is equivalent to the robust option,
since each group is represented by one observation.
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A pair of mechanical examples (i.e. these are not really sensible causal mod-
els, but merely illustrative of the approaches in small publicly available datasets)
of code for all three estimators (FE, FD, and LD) is given in Exhibit 3.1.1.

Exhibit 3.1.1 Sample code for fixed effects, first differences, and long differences.

webuse grunfeld, clear
xtreg invest kstock, fe cl(com)
est sto FE
reg d.invest d.kstock, cl(com)
est sto FD
su time, meanonly
gen t=time==r(max) if time==r(min) | time==r(max)
tsset com t
g dks=d.kstock if t<.
g dinv=d.invest if t<.
reg dinv dks, cl(com)
est sto LD

use http://fmwww.bc.edu/ec-p/data/macro/abdata.dta, clear
xtreg ys k n, fe cl(id)
est sto FE
reg d.ys d.k d.n, cl(id)
est sto FD1
xtivreg2 ys k n, fd cl(id) small
est sto FD2
su year, meanonly
gen t=year==r(max) if year==r(min) | year==r(max)
tsset id t
g dys=d.ys if t<.
g dk=d.k if t<.
g dn=d.n if t<.
reg dys dk dn, cl(id)
est sto LD
esttab *, nogaps

To choose among FE/FD/LD models, one must impose some assumptions on
the speed with which XT affects y, or have some evidence as to the right time
frame for estimation. This type of choice comes up frequently when stock prices
are supposed to have adjusted to some news, especially given the frequency of data
available; economists believe the new information is capitalized in prices, but not
instantaneously. Taking a difference in stock prices between 3:01pm and 3pm is
inappropriate, but taking a long difference over a year is clearly inappropriate as
well, since new information arrives continuously.

One common pitfall in first-difference models is endogeneity of timing in
changes in the treatment variable X . For example, if we measure the impact
of a job training program on earnings, we may see a large response comparing
earnings just after training to just before, even if training has no real impact on
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earnings. Those who partake of training are more likely to be those who had a
substantial drop in earnings relative to their long-run average, and may experi-
ence a bump above their long-run average earnings due to a placebo motivational
effect after training, but if we compare earnings a few periods before to a few peri-
ods after training, there might well be no difference. The common feature of a dip
in outcomes just before treatment is known as Ashefelter’s dip after Ashenfelter
(1978).

In many panel models, one must think carefully about within-panel trends and
the frequency of measurement. On within-panel trends, note that we cannot usu-
ally obtain consistent estimates of within-panel trends for the same reason we can-
not usually obtain consistent estimates of fixed effects; the number of parameters
increases linearly in the number of panels N , and we usually think of asymptotic
results justifying our estimates using samples with increasing number of panels
N (and fixed panel length). But we can treat the fixed effects and within-panel
trends as nuisance parameters, and in the standard linear model, estimating these
terms does not bias our coefficient estimates for the variables of interest.

On the frequency of measurement, we can use various filtering techniques to
get different frequency “signals” from noisy data. A very simple method used
in Baker et al. (1999) is often attractive, as it offers a easy way to decompose
any variable Xt into two orthogonal components: a high-frequency component
(Xt−Xt−1)/2 and a low-frequency component (Xt +Xt−1)/2 that together sum
to Xt. More sophisticated filters are often discussed in the time-series literature,
for example the Kalman filter and other methods discussed in [TS] arima.

3.2 Diff-in-Diff
Having eliminated bias due to unobservable heterogeneity across units indexed by
i by differencing, it is often tempting to difference again, leading to a multidimen-
sional fixed-effects model.

A very simple version of a multidimensional fixed-effects model is the difference-
in-difference model, or diff-in-diff, and the simplest form of that model has only
two categories for each dimension. For example, if some states in the US expe-
rienced a policy shift in one year and some did not, we can compare outcomes
before and after for both groups of states, shown in the table in Exhibit 3.2.1 with
mean outcomes for states that experienced a policy shift in the treatment group,
labeled T. In general, we think of measuring mean outcome before and after the
start of treatment, so X = 0 for group T in period Pre and X = 1 for group T in
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period Post, whereas X = 0 for group C in period Pre and X = 0 for group C in
period Post.

Exhibit 3.2.1 Mean outcomes in the simplest diff-in-diff design.

Pre Post
T y1 y2
C y3 y4

The cross-sectional OLS estimator is y2 − y4 and the “interrupted time se-
ries” or “pre-post” estimator is y2 − y1, but these have very low internal validity
(we suspect they are badly biased in general, if there is a persistent group dif-
ference and a fixed time period effect or “common shock”). The difference-in-
difference estimator is (y2−y4)− (y1−y3) viewing the pre-treatment difference
in means as an estimate of baseline differences, or (y2 − y1) − (y4 − y3) view-
ing the change over time in means for the control group as an estimate of the
counterfactual change over time in means for the treatment group (had treatment
not occurred). The two estimates are identical, and are equivalent to a fixed ef-
fects estimator where an indicator for T is included for the group fixed effect,
and an indicator for Post is included for the time fixed effect, and the interaction
term T × Post is included to measure the difference in differences.1 See Athey
and Imbens (2006) for a generalization of the difference-in-difference model that
identifies the entire distribution of effects.

3.3 More Fixed Effects Models
A more general strategy is to include different sets of exhaustive indicators to
difference out fixed effect in multiple dimensions. For example, it is common to
include indicator variables for time t in fixed-effects models, as shown in example
code in Exhibit 3.3.1 (simpler in Stata 11 using factor variables), thus creating a
two-way fixed-effects model.

Exhibit 3.3.1 Including indicator variables for an additional dimension of FE.

1Note that the simple interpretation for the coefficient on an interaction term does not apply in
nonlinear models; see Ai and Norton (2003) and Norton et al. (2004) on interpretation of interac-
tions in logit and probit.
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webuse grunfeld, clear
qui tab year, gen(d)
drop d1
xtreg inv ks d*, fe cl(com)

If individuals i are observed in different settings j, for example students who
attend various schools or workers who reside in various locales over time, we
can also include indicator variables for j in a fixed-effects model. Thus we can
consider various n-way fixed-effects models, though models with large numbers
of dimensions for fixed effects may rapidly become unstable or computationally
challenging to estimate (see e.g. felsdvreg and other packages on SSC for
estimating multidimensional fixed effects).

3.4 Random Effects (RE)
The LD, FD, and FE estimators use none of the cross-sectional differences across
groups (individuals) i, which can lead to lower efficiency (relative to an estimator
that exploits cross-sectional variation), and they also drop any variables that do
not vary over t within i, so the coefficients on these variables (which may be of
some intrinsic interest) cannot be estimated with these methods.

The random-effects estimator (RE) available from xtreg exploits cross-sectional
variation and reports coefficients on variables that do not vary over t within i, but
requires strong assumptions about error terms that are often violated in practice.
In particular, for RE to be unbiased in situations where FE is unbiased, we must
assume that uit is uncorrelated with XT

it (which contradicts our starting point
above, where we worried about a XU correlated with XT ). There is no direct
test of this assumption about an unobservable disturbance term, but the Hausman
test (hausman) is a test of the null that the coefficients estimated in both the
RE and FE models are the same. A better alternative is the user-written com-
mand xtoverid on SSC (by Mark Schaffer and Stephen Stillman) which has
the same null but offers standard errors robust to heteroskedasticity or clustering.
In Exhibit 3.4.1, a rejection casts doubt on whether RE is consistent when FE is,
so we should switch to fixed effects.

Exhibit 3.4.1 A generalized Hausman test for RE versus FE.

webuse grunfeld, clear
egen ik=max(ks*(year==1935)), by(com)
xtreg inv ks ik, re cl(com)
xtoverid
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An alternative approach that assumes all of the observable variables are uncor-
related with e but may be correlated with u includes the estimators of Hausman
and Taylor (1981) and Amemiya and MaCurdy (1986), both of which use in-
strumental variables and are estimated by the xthtaylor command in Stata.
The estimators implemented in xthtaylor offer the possibility to identify the
impact of a time-invariant variable on y, but use an instrumental variables (IV)
estimator, so they are subject to many of the caveats in chapter 4 on those models.

Various other panel methods use further assumptions about the distributions
of errors or other effects to get more efficient consistent estimates. Mixed mod-
els, also called multilevel models, or hierarchical linear models, estimates by
xtmixed or gllamm (on SSC) assume that there are a variety of fixed and ran-
dom effects, so they are a bit like random effects on steroids. Typically, there is
a tradeoff between improved efficiency bought by making assumptions about the
data-generating process versus robustness to various violations of assumptions.
For example, xtmixed can estimate a model like

yit = Xitbi + eit

and give estimates for the mean effect of X on y only under very restrictive as-
sumptions; more generally an instrumental variables estimator is needed to iden-
tify he mean effect of X on y in such a model. One common application of
mixed models to panel data is known as “growth curve” modeling, in which
individual-specific slopes are assumed to be normally distributed between mea-
surement points so that growth of y is piecewise linear over intervals defined by
measurement frequency. In this specification, time variables are the main explana-
tory variables and many covariates may be interacted with time variables so that
they are assumed to affect the rate of growth in y rather than the level of y directly.

3.5 Measurement Error in Panel Models

Griliches and Hausman (1986) point out that measurement error which has a larger
variance within unit than across units may be a good reason to prefer a pooled
specification to any other panel method. They also show that a long-difference
estimator has many desirable robustness properties. Measurement error is a major
headache in any regression model, but moreso in a panel regression, particularly if
there is reason to think that measurement error is correlated across variables. For
example, if log hours worked are regressed on log wage in an attempt to measure
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labor supply elasticities, and wages are computed from the ratio of reported earn-
ings and reported hours, any measurement error in hours will contaminate both
y and X in a predictable way, causing “division bias” (Borjas 1980). In a panel
regression which throws away the cross-sectional variation and uses only within-
panel variation, it is possible that most of the variation purportedly identifying the
impact of X on y is actually due to correlated measurement error!

3.6 Dynamic Panel Models

Panel models that include lags of the outcome variable y as explanatory variables
and contain unobserved fixed (or random) effects ui are called dynamic panel
models. The ui are correlated with the lagged y, because ui in one period affects
the level of y in that period, which affects the level of y in a later period. The corre-
lation makes standard estimators inconsistent, even for the linear model. Arellano
and Bond (1991) gave a consistent GMM estimator and Blundell and Bond (1998)
gave a superior system estimator in the same vein, designed for datasets with many
panels (large N , or many units i) and few periods (small T , or few observations
per panel i). The standard Stata implementations are xtabond and xtdpd (or
xtdpdsys)2 respectively, but see also Roodman (2009a) and Bruno (2005). To
use this approach, we have to assume no autocorrelation in the idiosyncratic errors
eit and the initial condition that the ui are uncorrelated with the first observed first
difference of the outcome variable yi2 − yi1.

Note that another class of models that include lags of the outcome variable y
as explanatory variables, where the lags are with respect to distance rather than
time, are called “spatial models” (or “network” models if distance is discrete) and
suffer from similar estimation difficulties. Lee (2004) describes estimation of a
model that allows for spatially correlated errors, but does not include a spatially
lagged dependent variable. A GMM approach similar to that taken in the dynamic
panel model case can give consistent estimates in a wide variety of these models
(Kelejian and Prucha 1999; 2004, Kapoor et al. 2007, Kelejian and Prucha 2008,
Badinger and Egger 2009, Lee 2007, Lee and Liu 2009, Drukker 2008).

2Note that the GMM two-step estimator for standard errors is badly biased, but xtdpd imple-
ments the bias-corrected estimator of Windmeijer (2005).
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3.7 Nonlinear Panel Models
You can’t generally get consistent estimates in a nonlinear model with many pan-
els i and few observations T per panel by manually including fixed effects via
indicator variables for individuals, though the bias is often overstated (simula-
tions often show the bias with even T = 30 or more to be negligible, depending
on the model estimated and the data). It is often the case that estimates using a
linear panel regression to approximately estimate marginal effects for a nonlinear
model are close enough to be qualitatively indistinguishable from a correct model,
but see Chernozhukov et al. (2008).

The xtlogit and xtprobit commands will estimate a model

Pr (yit|Xit, ui) = G (Xitb+ ui)

where the panel effects ui are assumed uncorrelated with the Xit, or

yit = I (Xitb+ ui + eit > 0)

writing eit for the idiosyncratic error and I() for the indicator function. The panel
effects ui can be assumed to be random effects in xtprobit and xtlogit, or
fixed effects in the case of xtlogit and clogit where the observed number of
y = 1 outcomes is a sufficient statistic for the level of ui in the “conditional fixed
effects” model. However, we would generally like to allow some unknown form
of dependence between the panel effects and treatment variables.

Various methods to estimate nonlinear models assuming fixed effects ui poten-
tially correlated with X require “strict exogeneity” (Chamberlain 1984), so that
the distribution of the outcome at one point yit given all realizations of X and ui
is the same as the distribution of yit given the current Xit and ui. This means X at
one point in time has no effect on future realizations of the idiosyncratic error e,
so for example an increase in treatment at an earlier period cannot influence other
unobserved factors that vary over time and affect otucomes.

Wooldridge (2005b) discusses a strategy to estimate the average marginal ef-
fects in a fixed-effects probit assuming the distribution of panel effects ui is nor-
mal and integrating them out using the standard command xtreg with the re
option (and some extra variables included as explanatory variables), which com-
pares favorably with related methods (Arulampalam and Stewart 2009). Papke
and Wooldridge (2008) discuss a class of GLM strategies to estimate average
marginal effects. In general, it is much harder to consistently estimate the co-
efficients b than the average marginal effects ∂Pr(yit=1|Xit,ui)

∂X
.
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The Correlated Random Effects framework allows dependence between ui and
Xi,if the dependence is restricted in some way. One approach due to Chamberlain
(1980; 1984) is to assume a parametric family of distributions for the distribution
of ui given X , for example,

ui = Xγ + e e ∼ N(0, v)

which is clearly a restrictive assumption. One also can instead assume that the
distribution of panel effects depends only on the panel-specific means ofX (not on
within-panel variation) without arbitrarily restricting the distribution of ui given
X (Altonji and Matzkin 2005). See also Graham and Powell (2009).

3.8 Falsification Tests
Often, the variation over time (or space) within panel in X is naturally occurring,
and is taken to represent a “natural experiment” (for example, when a scientific
advance reaches some parts of the world sooner than others, or a policy is rolled
out in some place sooner than others, and we take the timing of the diffusion to
be essentially random). In this case, some kind of “falsification test” or “placebo
test” is usually called for.

A falsification test regresses on X an outcome that should not, or cannot, be
caused by the naturally occurring variation in X , and a significant coefficient is
taken as evidence of nonrandom variation in X . This is a bit like regressing pre-
treatment characteristics on treatment status in an experiment to assess whether
randomization failed somehow. Rothstein (2007a) offers a useful applied exam-
ination of identifying assumptions in FE models and correlated random effects
models. He estimates the “effect” of a later class assignment (think of this as a
teacher effect) on earlier test score gains, which cannot have a causal interpre-
tation, and finds similar-sized effects as in a regression of test scores on teacher
fixed effects. This calls into question a vast literature on estimating teacher fixed
effects, and has spawned a search for better estimation strategies for teacher ef-
fectiveness (and undercut the political will for high-stakes tenure decisions based
on “value-added” models of teacher effectiveness).

This type of placebo test regresses the actual outcome y on an X that should
not have a causal effect, and a significant coefficient is taken as evidence of non-
random variation in y that could be due to an unobserved factor that causes vari-
ation in X and Z and y so we cannot yet ascribe a causal role to X . This is
analogous to the experimental model where we do not ascribe a causal role to the
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sugar in a sugar pill, and if we find that a sugar pill and a drug have the same effect,
we conclude the drug has no effect over and above the pure effect of convincing
someone they are taking a pill.

An alternative placebo test regresses the actual outcome y on a fake X , ei-
ther via reassigning X values across units i or by generating random X vectors
for each i from a distribution chosen to look like the real X process. Here the
finding of significant coefficients when regressing actual outcome y on pure noise
X is taken to indicate inconsistent standard errors, or small sample failings of
asymptotic approximations.

3.9 Segue
Generally, panel methods eliminate the bias due to some unobserved factors and
not others. Considering the FE, FD, and LD models, it is often hard to believe that
all of the selection on unobservables is due to time-invariant factors. If we don’t
believe that all of the selection is on observables (suggesting a regression, match-
ing, or reweighting model) or that all of the selection on unobservables is due
to time-invariant factors (suggesting a panel model), we can turn to Instrumental
Variables (IV) methods.



Chapter 4

Instrumental Variables Methods

An alternative to panel methods and matching estimators is to find another set of
variables Z correlated with XT but not correlated with the error term, e.g. e in

y = XTβT +XCβC + e

so Z must satisfy E(Z ′e) = 0 and E(Z ′XT ) 6= 0. The variables Z are called
excluded instruments, and one of a large class of Instrumental Variables (IV)
methods can then be used to consistently estimate an impact ofXT on y. The basic
idea is, loosely, to get the component of the outcome y along the portion of X that
is exogenous, which is the component of X along Z. Since we are “throwing
away” all the “bad” endogenous variation in X we also sacrifice efficiency, and
IV estimators have much greater variance than standard regression techniques.

Perhaps the earliest and most famous example of the method at the heart of IV
is the investigation of a cholera outbreak in London in 1853 to 1854 undertaken by
Snow (1855); see Freedman (1991) and Deaton (1997) for more. Snow mapped
cholera deaths (Figure 4.1) and collected data on which water company supplied
each household in most London streets and found that the choice of water com-
pany by households seemed essentially random, with pipes from each company
in each street. The intake pipes for one companies drew water from the Thames
below the main sewage outflow and another from upriver; cholera deaths were
more than eight times likelier among those supplied by the first company. The
treatment is contaminated water, and the water company supplying a household is
the excluded instrument. Even if Snow had direct measurements on water quality,
there are many factors affecting water quality which are not randomly assigned;
the water company can supply the needed random variation in treatment (in fact,

83
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Snow’s analysis was the “reduced form” association of the outcome and the ex-
cluded instrument).

Angrist and Krueger (2001) cite the Wright (1928) analysis of agricultural
supply and demand as the first modern development of instrumental variables.
Recent famous examples include using compulsory schooling laws to estimate
the effect of education on earnings, where the requirement to stay in school until
a certain age induces some individuals to get a little more education than they
otherwise would (Angrist and Krueger 1991, Bound et al. 1995), or using number
of streams running through a city to discern the effect of more choice over school
districts on student outcomes (Rothstein 2007b, Hoxby 2007). The estimation of
the effect of education on wages by Card (1995) using proximity to colleges at an
earlier age is a running example in the following discussion.

Because IV can lead one badly astray if any of the assumptions is violated,
anyone using an IV estimator should conduct and report tests of:

1. instrument validity (overidentification or overid tests),

2. endogeneity,

3. identification,

4. presence of weak instruments,

5. and misspecification of functional form (RESET).

Further discussion and suggestions on what to do when a test is failed appear in
the relevant sections below.

The instrumental variables estimators are in general only as good as the ex-
cluded instruments used, so naturally criticisms of the predictors in a standard
regression model become criticisms of the excluded instruments in an IV model.

The IV estimators are still biased, but consistent, and are much less efficient
than OLS, so failure to reject the null should not be taken as acceptance of the al-
ternative. That is, one should never compare the IV estimate only to a zero effect,
but also to other plausible values, including the OLS estimate. Some other com-
mon pitfalls discussed below include improper exclusion restrictions (checked via
overidentification tests) and weak identification (checked via various diagnostics
and followed up by robust inference); see also Murray (2006).

It is worth repeating that IV estimators are biased in finite samples, and are
only justified for very large samples. Nelson and Startz (1990) showed how
strange the finite sample behavior of an IV estimator can be, and Bound et al.
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Figure 4.1: Snow’s map of cholera deaths
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(1995) argued that even samples of millions of observations can be insufficient
for asymptotic justifications to apply in the presence of weak instruments; see
also Stock and Yogo (2005) and Cruz and Moreira (2005).

4.1 Interpretation of estimated coefficients
Various interpretations of the IV estimate have been advanced, typically as the
Local Average Treatment Effect, or LATE, meaning the effect of XT on y for
those who are induced by their level of Z to have higher XT . If the treatment
effect is the same across the whole population, then the LATE and ATE are the
same, and we consistently estimate the effect of XT on y with IV; if not, we
may be required to consider a “random coefficient” model where individuals not
only have distinct yi and XT

i but distinct coefficients bi as well. IV can also
estimate average treatment effects in the random coefficient model, but only under
additional assumptions does IV still identify an average treatment effect of interest
(Wooldridge 1997, Heckman and Vytlacil 1998, Wooldridge 2003).

The LATE interpretation is particularly straightforward for a single endoge-
nous indicator variable indicating treatment status (Angrist et al. 1996). For the
college graduate example, this might be the average gain Ei[yi(t) − yi(0)] over
all those i in the treatment group with Z = 1 (where Z might be “lived close to
a college” or “received a Pell grant”), arising from an increase from XT = 0 to
XT = t in treatment, i.e. the wage premium due to college averaged over those
who were induced to go to college by Z.

For example, Card (1995) estimates the wage premium due to an additional
year of education for who were induced to go to college by growing up near a
college, which effectively lowers the cost of going to college (variation in the
effective cost is a good source of exogenous variation, as argued in C). The in-
terpretation of the IV coefficient shown in Exhibit 4.1.1 for an individual is thus
the percentage difference in mean earnings for an individual given the 16 years of
education they got, less the 15 years they might have gotten had they not grown
up near a college. The IV coefficient averages across individuals induced to get
more education by this Z, to get the LATE of an extra year of education, implying
the return to an additional year of education is about 18 percent and lies in the
interval 7 to 29 percent (which includes the OLS estimate).

Exhibit 4.1.1 The Card (1995) data, renamed to match notation.
use http://pped.org/card, clear
loc xc "exper* smsa* south black reg662-reg669"
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ren lwage y
loc z "nearc2 nearc4"
ren educ xt
regress y xt ‘xc’ [pw=weight]
est sto OLS
ivreg2 y ‘xc’ (xt=‘z’) [pw=weight], first
est sto IV
esttab OLS IV, drop(s* reg*) mti nonum nogap nostar nonote
--------------------------------------

OLS IV
--------------------------------------
xt 0.0753 0.182

(18.80) (3.24)
exper 0.0928 0.129

(12.02) (6.23)
expersq -0.00253 -0.00225

(-6.89) (-4.72)
black -0.210 -0.128

(-9.23) (-2.57)
_cons 4.566 2.792

(57.15) (2.99)
--------------------------------------
N 3010 3010
--------------------------------------

As Kling (2001) points out, the increase in education arising from Z seems to
occur not only in the teens of years of education but in the high-school years as
well, which presents some trouble for the theory. Why should people be induced
to finish eleventh grade by the proximity of a college, when they will not finish
high school? It is possible, of course, that people intend to go on to college be-
cause one is nearby, but life intervenes in some way. A more serious critique is
that colleges are not sprinkled randomly around the country, and people are not
sprinkled randomly at various distances from colleges. For example, the children
of college professors are much more likely to grow up near a college.

4.2 IV for Experiments
Perhaps the best-case scenario for IV is where treatment group status has been
randomly assigned, but there is some modest failure of the experimental proto-
col, so not every case gets the level of treatment that was randomly assigned to
it. In that case, the assignment can be used as an excluded instrument for the en-
dogenous level of treatment actually received. The interpretation of a coefficient
regressing outcomes on random assignment is the effect of “intention to treat”
rather than treatment, whereas the IV model gives an interpretation of the (lo-
cal) average treatment effect for those individuals induced to get treatment by the
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random assignment to a treatment group.

4.3 Forms of IV
The standard IV estimator in a model

y = XTβT +XCβC + e

where we have Z satisfying E(Z ′e) = 0 and E(Z ′XT ) 6= 0 is

β̂IV =

 β̂IVT

β̂IVC

 = (X ′PZX)−1X ′PZy

(ignoring weights), whereX = (XTXC) and PZ is the projection matrixZa(Z ′aZa)
−1Z ′a

with Za = (ZXC). The idea is, we use the component of XT along Z, which is
exogenous, as the only source of variation in XT that we use to estimate the effect
on y.

These estimates are easily obtained in Stata 6 through 9 with the syntax ivreg
y xc* (xt* = z*), where xc* are all exogenous “included instruments”
XC and xt* are endogenous variables XT . In Stata 10 and higher, the syn-
tax is ivregress 2sls y xc* (xt* = z*). For Stata 9 and above, the
ivreg2 command on SSC would be written ivreg2 y xc* (xt* = z*)
or as in Exhibit 4.1.1.

The standard IV estimator is equivalent to several forms of two-stage estima-
tors. The first, which gave rise to the moniker Two-Stage Least Squares (2SLS),
has you regress XT on XC and Z and predict X̂T , then regress y on X̂T and XC .
The coefficient on X̂T is β̂IVT .

Exhibit 4.3.1 A manual two-step estimate using the Card (1995) data.

foreach x of varlist xt {
reg ‘x’ ‘xc’ ‘z’ [pw=weight]
predict double ‘x’_hat
}
reg y *_hat ‘xc’ [pw=weight]
est sto TS1
esttab IV TS1, b(%12.8f) drop(s* reg*) mti nonum nogap nostar nonote order(xt xt_hat)
--------------------------------------

IV TS1
--------------------------------------
xt 0.18206326
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(3.24)
xt_hat 0.18206326

(3.44)
exper 0.12940770 0.12940770

(6.23) (6.61)
expersq -0.00224836 -0.00224836

(-4.72) (-5.48)
black -0.12752139 -0.12752139

(-2.57) (-2.76)
_cons 2.79195292 2.79195292

(2.99) (3.18)
--------------------------------------
N 3010 3010
--------------------------------------

The two-stage version gives the same estimates as the standard IV commands,
but the reported standard errors are wrong, as Stata will use X̂T rather than XT

to compute them. Even though IV is not implemented in these two stages, the
conceptual model of these first-stage and second-stage regressions is pervasive,
and the properties of the “first-stage regressions” are central to the section on
identification and weak instruments below.

The second two-stage estimator that generates identical estimates is often
called a control-function approach. Regress each variable in XT on the other
variables inXT andXC and Z to predict the errors v̂T = XT−X̂T , then regress y
on XT , v̂T , and XC , and you will find that the coefficient on XT is β̂IVT , and tests
of significance on each v̂T are tests of endogeneity of each XT . With multiple
treatment variables xt* we can use the code in Exhibit 4.3.2.

Exhibit 4.3.2 Code for the manual two-stage control-function approach.

cap drop *_hat
unab xt : xt*
foreach v of loc xt {
loc otht: list xt-v
reg ‘v’ xc* z* ‘otht’
predict v_‘xt’, resid
}
reg y xt* xc* v_*

In the Card data, the code in Exhibit 4.3.4 will give the IV estimates, though
again the standard errors will be wrong. However, the tests of endogeneity (given
by the reported p-values on variables v * above) will be correct. A similar ap-
proach works for nonlinear models such as probit or poisson (help ivprobit
and findit ivpois for relevant commands). The tests of endogeneity in non-
linear models given by the control-function approach are also quite robust (see e.g.
Wooldridge 2002; p.474,665).
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Exhibit 4.3.3 Code for the manual two-stage control-function approach in the
Card data.

foreach x in xt {
reg ‘x’ ‘xc’ ‘z’ [pw=weight]
predict double v_‘x’, resid
}
reg y xt ‘xc’ v_* [pw=weight]
est sto TS2
esttab IV TS1 TS2, b(%12.8f) drop(s* reg*) mti nonum nogap nostar nonote
---------------------------------------------------

IV TS1 TS2
---------------------------------------------------
xt 0.18206326 0.18206326

(3.24) (3.67)
exper 0.12940770 0.12940770 0.12940770

(6.23) (6.61) (7.06)
expersq -0.00224836 -0.00224836 -0.00224836

(-4.72) (-5.48) (-5.74)
black -0.12752139 -0.12752139 -0.12752139

(-2.57) (-2.76) (-2.93)
xt_hat 0.18206326

(3.44)
v_xt -0.10749438

(-2.17)
_cons 2.79195292 2.79195292 2.79195292

(2.99) (3.18) (3.39)
---------------------------------------------------
N 3010 3010 3010
---------------------------------------------------

The third two-stage version of the IV strategy, which applies in the case of one
endogenous variable and one excluded instrument, is sometimes called the Wald
estimator. First regress XT on XC and Z (let π̂ be the estimated coefficient on
Z), then regress y on Z and XC , (let γ̂ be the estimated coefficient on Z), and the
ratio of coefficients on Z (γ̂/π̂) is β̂IV , which will give the same estimate as the
standard IV estimator. The regression of y on Z and XC is sometimes called the
reduced form regression, though this name is often applied to other regressions,
so I will avoid using the term.

Exhibit 4.3.4 Code showing equivalence of Wald estimator to IV using the Card
data.

use http://pped.org/card, clear
loc xc "exper* smsa* south black reg662-reg669"
ren lwage y
loc z "nearc4"
g xt=(educ>=16)
ivreg2 y ‘xc’ (xt=‘z’) [pw=weight], first
loc iv=_b[xt]
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regress xt ‘z’ ‘xc’ [pw=weight]
loc p=_b[‘z’]
regress y ‘z’ ‘xc’ [pw=weight]
loc g=_b[‘z’]
di "compare " ‘g’/‘p’ " to " ‘iv’

The generalized method of moments (GMM), limited-information maximum
likelihood (LIML), and continuously-updated GMM estimation (CUE) forms of
IV are discussed at length in Baum et al. (2007) and various implementations
are available from the ivregress and ivreg2 commands. Some forms of IV
may be expressed as k-class estimation (including the deprecated Jackknife IV
Estimator, or JIVE), available from ivreg2, and there are many other forms of
IV models, including official Stata commands such as ivprobit, treatreg,
and ivtobit, and user-written additions such as qvf (Hardin et al. 2003), jive
(Poi, 2006), and ivpois (on SSC). Abbring and Van den Berg (2003b) discusses
identification of a survival regression with endogenous regressors, but there is no
simple analog to IV for survival regression. Even a logit regression is difficult to
generalize to the IV-GMM setting (Lucchetti 2002).

The GMM flavor of IV offers increased efficiency over the standard 2SLS
estimator, and the LIML flavor offers increased robustness. JIVE is out of favor
due to results showing its poor performance in finite samples, notably Davidson
and MacKinnon (2007); see also Kinal (1980) and Fuller (1977) on the moments
of IV estimators.

4.4 Finding Excluded Instruments
The hard part of IV is finding a suitable Z matrix. The excluded instruments in
Z have to be strongly correlated with the endogenous XT and uncorrelated with
the unobservable error e. But note that the problem we wish to solve is that the
endogenous XT is correlated with the unobservable error e. A good story is the
crucial element in any plausible IV specification. We the readers need to believe
that Z is strongly correlated with the endogenous XT but has no direct impact on
y (is uncorrelated with the unobservable error e), since the assumptions are not
directly testable. However, the tests discussed in the following sections can help
buttress a convincing story, and should be reported in any case.

In general, specification search in the first stage regressions of XT on some Z
does not bias estimates or inference, nor does using generated regressors. How-
ever, it is easy to produce counterexamples to this general rule. For example,
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taking Z = XT + ν where ν is a small random error will produce strong identi-
fication diagnostics, and might pass overidentification tests described in the next
section, but will not improve estimates (and could lead to substantially less accu-
rate inference).

If some Z are weak instruments, then regressingXT on Z to get X̂T and using
X̂T as the excluded instruments in an IV regression of y on XT and XC will like-
wise produce strong identification diagnostics, but will not improve estimates or
inference. Hall et al. (1996) reported that choosing instruments based on measures
of the strength of identification could actually increase bias and size distortions.

4.5 Testing Assumptions Required for IV

Because the IV estimator is so sensitive to violations of assumptions, it is espe-
cially crucial to check that the assumptions are satisfied, insofar as possible. The
code in Exhibit 4.5.1 shows performing a variety of checks, each of which is dis-
cussed below, using the data from Card (1995) to estimate the impact of education
on wages, where nearness to a college is posited as a source of exogenous varia-
tion in educational attainment. Note that ivreg2, ranktest, ivreset, and
estout, all on SSC, are required to run the code. We find the return to an ad-
ditional year of education is about 7% using ordinary regression or 18% using an
IV method.

Exhibit 4.5.1 Code showing IV specification tests using the Card data.

use http://pped.org/card.dta, clear
g m=married==1
la var m "Married"
loc xc "exper expersq m black south smsa reg662-reg669 smsa66"
reg lwage educ ‘xc’ [pw=weight]
loc ols=_b[educ]
est sto OLS
ivreg2 lwage ‘xc’ (educ=near*) [pw=weight], endog(educ)
est sto IV
test educ=‘ols’
estadd scalar vs_OLS=r(p)
ivreset
estadd scalar RESET=r(chi2)
estadd scalar RESET_p=r(p)
esttab OLS IV using c.tex, la mti sca(‘s’) keep(e*)
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(1) (2)
OLS IV

Educ attainment in years 0.0730∗∗∗ 0.179∗∗

(18.61) (3.22)

Experience (years working) in 1976 0.0810∗∗∗ 0.120∗∗∗

(10.61) (5.55)

Squared experience (years working) in 1976 -0.00217∗∗∗ -0.00196∗∗∗

(-5.98) (-4.23)
Observations 3010 3010
F 73.29 37.94
r2 0.288 0.0621
vs OLS 0.0565
estatp 0.0345
jp 0.240
idp 0.000402
widstat 7.937
RESET p 0.898
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

4.5.2 Test IV versus OLS

We always want to test whether the OLS point estimate is included in the IV con-
fidence interval, which is done in Exhibit 4.5.1 by saving the OLS point estimate,
and testing equality to that value of the IV estimate. The p-value is reported in the
table as 5.65 percent, so we cannot reject the null that the true value underlying
the IV estimate is equal to the OLS point estimate. This indicates that the higher
value of the IV point estimate merely indicates that the OLS estimate could be
biased downward, but the OLS point estimate is also a plausible estimate of the
effect of education on earnings. With a larger sample size, the precision of the
IV estimator would improve, and we would find that the OLS point estimate is
no longer included in the IV confidence interval, but there is no support for that
assertion in Exhibit 4.5.1.

Since the IV confidence region includes the OLS confidence interval, the evi-
dence on OLS bias is very weak, and we have learned little from the IV estimate.
Still, if we accept the exclusion restrictions as valid, the evidence does not sup-
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port a story where omitting ability (causing both increased wages and increased
education) leads to positive bias. If anything, the bias seems likely to be nega-
tive, perhaps due to unobserved heterogeneity in discount rates or credit market
failures. In the latter case, the omitted factor may be a social or economic disad-
vantage. Those who have the most to gain from additional education may have bad
credit, or no access to good information about how much they stand to gain from
additional education. Stories about ability bias are less plausible, since effects
much smaller than the OLS point estimate lie outside the IV confidence interval.

4.5.3 Tests of Endogeneity

We would not want to use a high-variance IV estimator if the relevant explanatory
variables were not endogenous, so we test endogeneity. Even if we have an ex-
cluded instrument that satisfies E(Z ′e) = 0 there is no guarantee that E(XT ′ε) 6=
0 as we have been assuming, and if E(XT ′ε) = 0 we prefer ordinary regression
to IV. So we should test the null that E(XT ′ε) = 0 (a test of endogeneity), though
this test requires instrument validity (E(Z ′e) = 0), so it should follow any feasible
overid tests.

Baum et al. (2007) describe several methods to test the endogeneity of a vari-
able inXT , including the endog option of ivreg2 and the standalone ivendog
command (both available from SSC, with excellent help files). Section 4.2 above
also shows how the control function form of IV can be used to test endogeneity of
a variable in XT .

The test statistic in Exhibit 4.5.1 is labeled “Endogeneity test of endogenous
regressors” in the output for ivreg2, and under the null hypothesis that the spec-
ified endogenous regressors are exogenous, the test statistic is distributed χ2(k)
with degrees of freedom k equal to the number of regressors tested. The p-value
is reported in the table as 3.45 percent, so we reject the null that education is
exogenous.

4.5.4 Exclusion Restrictions in IV

The exclusion restrictions E(Z ′e) = 0 cannot be directly tested, but if there are
more excluded instruments than endogenous regressors, an overidentification or
overid (pronounced over-eye-dee) test is feasible and the result should be re-
ported. If there as exactly as many excluded instruments as endogenous regres-
sors, the equation is exactly identified, and no overid test is feasible.
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However, if Z is truly exogenous, it is likely also true that E(W ′e) = 0,
where W contains Z and squares and cross products of Z. Thus there is always
a feasible overid test using an augmented set of excluded instruments (though
E(W ′e) = 0 is a stronger condition than E(Z ′e) = 0, only in the case where we
reject the overid null for each element of W not in Z do we not gain anything
by augmenting the set of excluded instruments). For example, if you have two
good excluded instruments, you might multiply them together, and square each,
to produce five excluded instruments. Testing the three extra overidentification
restrictions is like a RESET test of excluded instruments. In addition, interactions
of Z and XC may be good candidates for excluded instruments. For reasons
discussed below, adding excluded instruments willy-nilly is a bad idea, and with
many weak instruments, LIML or CUE is preferred to standard IV/2SLS.

Baum et al. (2007) and the help file for ivreg2 discuss the implementation
of overid tests in ivreg2; see also overid (on SSC). Passing the overid test
(i.e. failing to reject the null of zero correlation) is neither necessary nor sufficient
for instrument validity (E(Z ′e) = 0), but rejecting the null in an overid test should
lead you to reconsider your IV strategy, and perhaps to look for different excluded
instruments.

The test statistic in Exhibit 4.5.1 is labeled the “Hansen J statistic” in the
output for ivreg2, and it is distributed χ2(1) under the null that the excluded
instruments satisfy the exclusion restrictions E(Z ′e) = 0. The p-value is reported
in the table as 24 percent, so we do not reject the null that the excluded instruments
satisfy the exclusion restrictions.

4.5.5 Identification and Weak Instruments
Even if we have an excluded instrument that satisfies E(Z ′e) = 0 there is no
guarantee that E(Z ′XT ) 6= 0. This is the second of the two crucial assump-
tions, and presents problems of various sizes in almost all IV specifications. The
extent to which E(Z ′XT ) 6= 0 determined the strength of identification. Baum
et al. (2007) describe tests of identification, which amount to tests of the rank of
E(Z ′XT ). These rank tests address the concern that a number of excluded in-
struments may generate exogenous variation in one endogenous variable and be
uncorrelated with another endogenous variable, so the equation is not identified
even though it satisfies the order condition (the number of excluded instruments is
at least as great as the number of endogenous variables). For example, if we have
two endogenous variablesX1 andX2 and three excluded instruments, all three ex-
cluded instruments may be correlated withX1 and not withX2. The identification
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tests look at the least partial correlation, or the minimum eigenvalue of the Cragg-
Donald statistic (Stock and Yogo 2005), for example, and measures of whether at
least one endogenous variable has no correlation with the excluded instruments.

Even if we reject the null of underidentification and conclude E(Z ′XT ) 6= 0,
we can still face a “weak instruments” problem if some elements of E(Z ′XT ) are
close to zero. The IV estimate is always biased, but is less biased than OLS to the
extent that identification is strong. In the limit of weak instruments, there would be
no improvement over OLS in terms of bias and the bias would be 100% of OLS,
and in the other limit, the bias would be zero percent of the OLS bias (though
this would require that the correlation between XT and Z be perfect, which is
impossible since XT is endogenous and Z is exogenous). In applications, you’d
like to know where you are on that spectrum, even if only approximately.

There is also a major distortion in the size of hypothesis tests. If you believe
you are incorrectly rejecting a null hypothesis about five percent of the time (i.e.
you have chosen a size α = 0.05), you may actually face a size of 20 percent, or
more.

Stock and Yogo (2005) reported rule-of-thumb critical values to measure the
extent of both of these problems. Their Table 1 shows the value of a statistic
measuring the predictive power of the excluded instruments that will imply a limit
of the bias to some percentage of OLS. For two endogenous variables and three
excluded instruments (n=2, K2 = 5) the minimum value to limit the bias to 20%
of OLS is 5.91. ivreg2 reports these values as Stock-Yogo weak ID test critical
values: one set for various percentages of “maximal IV relative bias” (largest bias
relative to OLS) and one set for “maximal IV size” (the largest size of a nominal
5% test).

The key point is that all IV and IV-type specifications can suffer from bias and
size distortions, not to mention inefficiency and sometimes failures of exclusion
restrictions. The Stock and Yogo (2005) approach measures how strong identifi-
cation is in your sample, and ranktest (on SSC) offers a way forward for cases
where errors are not assumed to be independently and identically distributed, but
neither provides solutions in the event that weak instruments appear to be a prob-
lem.

A further limitation is that these identification statistics only apply to the linear
case, not the nonlinear analogs, including those estimated via generalized linear
models (GLM). In practice, researchers typically report the identification statistics
for the closest linear analog, i.e. run ivreg2 and report the output alongside the
output from ivprobit or ivpois (on SSC) or some other model.

If you suspect weak instruments may be producing large bias or size distor-
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tions, you have several options. You can find better excluded instruments, possibly
simply by transforming your existing instruments, or including additional covari-
ates. You can use LIML or CUE which are more robust to many weak instruments
than standard IV. Perhaps best of all, you can conduct inference that is robust to
weak instruments; with one endogenous variable, use condivreg (Mikusheva
and Poi 2006), if you are willing to assume i.i.d. errors, or with more than one en-
dogenous variable or non-i.i.d. errors, use tests from Anderson and Rubin (1949)
described by Baum et al. (2007), sections 7.4 and 8.

The test statistic in Exhibit 4.5.1 is labeled “Weak identification test (Kleibergen-
Paap rk Wald F statistic)” in the output for ivreg2, and the test statistic has a
rather strange distribution. Stock and Yogo (2005) give illustrative critical values
derived from simulations, given desired bounds on size of tests and bias relative
to OLS, but the output in Exhibit 4.5.1 reports only critical values for size of test.
The test statistic is 7.937 and the critical values indicate that we can expect the
size of tests with a nominal size of 5 percent to be between 20 and 25 percent; if
we set the maximal size of test we would accept at 25 percent, we would reject
that we had a weak instruments problem, but if we set the maximal size of test we
would accept at 20 percent, we would fail to reject that we had a weak instruments
problem. We might want a wider 99 percent confidence interval in this case, to
approximate a 95 percent confidence interval, but the relative bias is probably also
substantial. If we re-estimate using also the interaction of the two excluded instru-
ments, as shown in Exhibit 4.5.6, we can see that the size is probably now greater
than 25 percent and bias roughly 30 percent of OLS. We can re-estimate using a
LIML estimator, and find the size distortion results in a test with a size in the 10
to 15 percent range, and presumably a smaller bias as well. By choosing a smaller
nominal size, e.g. a 98 percent confidence interval, we can come closer to our
target size of 95 percent.

Exhibit 4.5.6 Code showing IV specification tests using the Card data.

g nboth=nearc2*nearc4
ivreg2 lwage ‘xc’ (educ=n*) [pw=weight]
------------------------------------------------------------------------------
Weak identification test (Kleibergen-Paap rk Wald F statistic): 5.614
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 13.91

10% maximal IV relative bias 9.08
20% maximal IV relative bias 6.46
30% maximal IV relative bias 5.39
10% maximal IV size 22.30
15% maximal IV size 12.83
20% maximal IV size 9.54
25% maximal IV size 7.80

Source: Stock-Yogo (2005). Reproduced by permission.
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NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
ivreg2 lwage ‘xc’ (educ=near*) [pw=weight], liml level(98)
------------------------------------------------------------------------------
Weak identification test (Kleibergen-Paap rk Wald F statistic): 7.937
Stock-Yogo weak ID test critical values: 10% maximal LIML size 8.68

15% maximal LIML size 5.33
20% maximal LIML size 4.42
25% maximal LIML size 3.92

Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------

To construct an Anderson-Rubin confidence interval, we can do a simple grid
search, as in Exhibit 4.5.7, giving a confidence interval of (.074,.41); see also
Nichols (2006; p. 18) and Baum et al. (2007; p. 30).

Exhibit 4.5.7 Manually constructing an Anderson-Rubin confidence interval.

g y=.
foreach beta of numlist 70/75 370/420 {
qui replace y=lwage-(‘beta’/1000)*educ
qui reg y ‘xc’ nearc2 nearc4 [pw=weight]
qui test nearc2 nearc4
if inrange(r(p),.04,.06) di as res "Test of beta=0." ‘beta’,r(p)
}

4.5.8 Functional Form Tests in IV
As Baum et al. (2007; Sec. 9) and Wooldridge (2002; p. 125) discuss, the RESET
test regressing residuals on predicted y and powers thereof is properly a test of a
linearity assumption, or a test of functional form restrictions. ivreset performs
the IV version of the test in Stata. The null is that E(y|X) is linear in X and the
test statistic in Exhibit 4.5.1 (labeled “RESET p” in the table), gives a p-value of
90 percent so we do not reject the null. This does not mean that E(y|X) is truly
linear in X but it does mean that our data and the RESET test do not reject that
possibility; RESET is a fairly low-powered test.

A more informative specification check is the graphical version of RESET:
predict X̂T after the first stage regressions, then compute forecasts ŷ = XT β̂IVT +
XC β̂C and ŷf = X̂T β̂IVT +XC β̂C and graph a scatter of the residuals ε̂ = y−ŷ
against ŷf . Any unmodeled nonlinearities may be apparent as a pattern in the
scatterplot.

ivreg2 y xc* (xt = z*), first
quietly regress xt xc* z*
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predict xhat
quietly regress y xhat xc*
predict ehat, resid
predict yhatf
drop xhat
ren xt xhat
predict yhat
scatter ehat yhatf, name(f)
scatter ehat yhat, name(y)
scatter ehat xhat, name(x)

4.5.9 Standard Errors in IV

The largest issue in IV estimation is often that the variance of the estimator is
much larger than ordinary regression. Just as with ordinary regression, the stan-
dard errors are asymptotically valid for inference under the restrictive assump-
tions that the disturbances are independently and identically distributed. Getting
standard errors robust to various violations of these assumptions is easily accom-
plished using the ivreg2 command described in Baum et al. (2007). Many other
commands estimating IV models offer no equivalent robust SE estimates, but it
may be possible to assess the size and direction of SE corrections using the nearest
linear analog, in the spirit of using estimated design effects in the survey regres-
sion context.

The estimation shown in Exhibit 4.5.1 is weighted using sample weights spec-
ified as pweights (see help weights in Stata), and is therefore robust to het-
eroskedasticity (see also 1.5.4 above). We would also like to make it robust to
clustering, to account the sample design at the very least, but the clustering vari-
able is not on the data. If we cluster by gp as a proxy for sampling clusters,
however, the standard errors change only modestly, so we are reassured that the
bias in standard errors is not too drastic. Note that the weak instrument diagnos-
tics assume i.i.d. errors, so we are less confident of the interpretation of those
statistics.

4.5.10 Inference in IV

Assuming we have computed consistent standard errors, and the best IV estimate
we can, using a good set of Z andXC variables, there remains the question of how
we interpret the estimates and tests. Typically, IV identifies a particular LATE,
namely the effect of an increase in XT due to an increase in Z. If XT were
college and Z an exogenous source of financial aid, then the IV estimate of the
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effect of XT on wages would be the college wage premium for those who were
induced to attend college by being eligible for the marginally more generous aid
package.

Angrist and Krueger (1991) estimated the effect of education on earnings us-
ing compulsory schooling laws as a justification for quarter of birth as Z. Even if
the critiques of Bound et al. (1995) did not apply, the identified effect would be
for an increase in education due to being forced to remain in school a few months
more. That is, the measured wage effect of an additional year of education is for
the eleventh grade, roughly, and only for those who would have dropped out if not
for compulsory schooling laws.

Sometimes, a LATE of this form is exactly the estimate desired, but if we can-
not reject that the IV estimate differs from the OLS estimate, or the IV confidence
region includes the OLS confidence region, we may not have improved estimates,
but merely produced noisier ones. Only in the case where the IV estimate differs
can we hope to ascertain the nature of selection bias.

Most importantly, the tests enumerated here are only a rough guide to whether
instruments are useful or not. Theory must be the first and foremost guide. If
you pick variables that are alternative outcomes of your treatment variable, they
may be highly correlated with the treatment variable, and uncorrelated with the
unobserved error, and pass all the feasible tests, but may produce meaningless re-
sults. If the treatment variable is not being affected by the excluded instruments,
but is rather affecting it, how should we interpret the results? For example, Kelly
(2000) regresses crime on income inequality and police, treating police as poten-
tially endogenous and using mean income, non-police government spending, and
percent Republican votes in 1988 presidential election as instruments. Ignore for
a moment the test results in the paper, and pretend these pass the tests for excluded
instruments; is it plausible that the size of the police force is affected by non-police
government spending, instead of affecting it? Is it possible that income inequality
is endogenously determined with these excluded instruments? You must ask your-
self these types of questions when you read research using instrumental variables,
or use them yourself.

4.6 Binary variables
With a single endogenous variable T that is a binary indicator, the instrumental
variables model is especially inefficient, but there are several possible improve-
ments. The “treatment effect regression” model used in treatreg is closely re-
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lated to the “selection” model (Heckman 1974; 1976; 1979; 1990). If we assume
that selection of treatment status T (or whether or not the outcome is observed in
the selection model estimated by heckman) is a function of exogenous variables
Z (some of which also affect outcomes directly and are therefore included in X),
and the errors are normal, we can estimate the generalized residual from a first-
stage regression of T on Z and include it as an additional explanatory variable in
the second stage, or estimate both equations via maximum likelihood.

The two-step estimator (analogous to second two-stage IV estimator discussed
in 4.3) for the treatment effects regression regresses the endogenous dummy T on
Z with a probit, predicts the generalized residual, then includes that generalized
residual1 in the second stage regression of y on X . The Heckman two-step model
has identical steps, but in that model, y is missing for observations where the
dummy T is zero, and observed where T is one. In either case, the generalized
residual from the first stage is included in the second stage, but heckman does not
estimate the effect of T since it would be one for each observation in the sample,
whereas treatreg does estimate that coefficient.

In fact, rather than use the consistent two-step estimator, we would usually
use the maximum likelihood estimator (the default option) in either heckman or
treatreg. The model for heckman is

T = I(Zg + v > 0)
y = Ta+Xb+ e

T = I(Zg + v > 0)y = Ta+Xb+ e

and the model for treatreg is

T = I(Zg + v > 0)y = Xb+ e observed∀T = 1

where Z includes variables known to affect selection, and we can estimate via
maximum likelihood by assuming v and e are jointly normal. This assumption is
an unpleasant feature of both heckman and treatreg in that a small depar-
ture from joint normality can make the estimators no longer consistent, and we
could wind up with worse estimates than we would have ignoring selection or en-
dogeneity. There are a variety of semiparametric estimators for treatment effects
and selection models, some of which are discussed by Das et al. (2003).

1The generalized residual of the probit is called a hazard in Stata’s manuals, because it is a
density divided by a cumulative probability, and is called an Inverse Mills Ratio by many authors;
see also http://www.stata.com/support/faqs/stat/invmills.html
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With a binary endogenous treatment variable and a binary outcome, the bivari-
ate probit is a convenient estimation strategy. biprobit is a maximum likeli-
hood estimator of two correlated probits, so it estimates the correlation between v
and e in a model of the form:

T = I(Zg + v > 0)
y = I(Ta+Xb+ e > 0)

to get a consistent estimate of a. An alternative semiparametric approach for this
“triangular” or “recursive” system is given by assuming heteroskedasticity which
is a function of observables and modeling the distribution of errors using kernel
estimation (Newey et al. 1999, Klein and Vella 2009; forthcoming). Other models
with different structures (e.g. multinomial) can be estimated via a similar strategy
to biprobit by cmp (on SSC); see Roodman (2009b).

With a single endogenous variable T that is a binary indicator, and a continu-
ous outcome, we could use treatreg or regular IV. We can also use a modified
IV with greater efficiency that predicts the probability that T = 1 and uses the
predicted probability as an instrument (Wooldridge 2002; p. 626), which makes
a similar assumption about the process determining selection into treatment, but
weaker assumptions than treatreg on the joint distribution of errors. In gen-
eral, as always, if we make assumptions about errors, we can gain some efficiency
in the event that our assumptions are good ones, but lose some robustness against
violations of assumptions.

In the example in Exhibit 4.6.1, we use the Card (1995) data as before, but
model education as a binary treatment college. These regressions also indicate that
the OLS estimate may be biased downward, though the OLS confidence interval
is contained in the treatreg confidence interval and each of the IV intervals,
so we cannot conclude much with confidence.

Exhibit 4.6.1 A single binary endogenous variable and a continuous outcome.

use http://pped.org/card, clear
loc x "exper* smsa* south mar black reg662-reg669"
g byte coll=educ>15
probit coll ‘x’ nearc2 nearc4
predict p
treatreg lw ‘x’, treat(coll=nearc2 nearc4)
ivreg2 lw ‘x’ (coll=nearc2 nearc4), first liml
ivreg2 lw ‘x’ (coll=p), first liml
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4.7 Panel IV
If we don’t feel comfortable with the assumption that our excluded instruments Z
are uncorrelated with every unmeasured factor in e that affects y, we may be more
comfortable assuming that changes in Z are uncorrelated with changes in e, i.e.
Z may be correlated with time-invariant components of e only. Then we write

yit = Xitβ + ui + eit

where ui captures the effect of time-invariant individual-specific unobservable
factors (the individual effect) and eit is the idiosyncratic error. We difference
and write

∆yit = ∆Xitβ + ξit

where the ui drops out. If we assume ξit = eit − eis) is uncorrelated with changes
in Z, we have a panel IV model, estimated with xtivreg with the option fe for
a fixed-effects model or option fd for a first-difference model.

The fixed-effects IV estimator is fairly robust to mistakenly assuming a com-
mon effect β in the presence of individual-specific effects βi, provided a full set
of period dummy variables is included and endogenous explanatory variables are
continuous (Murtazashvili and Wooldridge 2008). However, it is important to
remember that the maintained assumption of a common effect is implausible in
many cases.

Note that the estimators in xthtaylor and xtivreg use instrumental vari-
ables (see chapter 4), but each is designed for different problems. The estimators
implemented in xtivreg assume that some variables in the model (the endoge-
nous variables) are correlated with the idiosyncratic error e but there are excluded
instruments that have no direct effect on the outcome and are uncorrelated with e.
On the other hand, the xthtaylor estimators assume that some of the explana-
tory variables are correlated with the individual effects ui, but none are correlated
with the idiosyncratic error eit.

4.8 Heterogeneity
The assumption that everyone has the same mean response to treatment allows
us to generalize to the entire population from an IV estimate, and allowing some
kind of heterogeneity in treatment effects leads us to interpret IV estimates as the
local average treatment effect for those induced by the instruments to get more
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treatment (i.e. increase XT ). With heterogeneity in treatment effects, we may
be interested in the distribution of heterogeneous treatment effects, rather than
the average treatment effects, which requires a IV version of quantile regression
(Chernozhukov and Hansen 2005; 2006, Horowitz and Lee 2007, Chernozhukov
et al. 2007, Chernozhukov and Hansen 2008).

More generally, there is a budding literature on local instrumental variables
which seeks to estimate the average treatment effect over some well-defined sub-
population. See for example Blundell and Powell (2003), Heckman and Vytlacil
(1999; 2001; 2004), Heckman et al. (2006)



Chapter 5

Regression Discontinuity Methods

The idea of the regression discontinuity (RD) design is to exploit an observable
discontinuity in the level of treatment related to an assignment variable Z, so the
level of treatment XT jumps discontinuously at some value of Z, the “cutoff.” Let
Z0 denote the cutoff. In the neighborhood of Z0, under some often plausible as-
sumptions, a discontinuous jump in the outcome y can be attributed to the change
in the level of treatment. Near Z0, the level of treatment can be treated as if it is
randomly assigned. For this reason, the RD design is generally regarded as having
the greatest internal validity of the quasi-experimental estimators.

This is perhaps clearest in a picture, or two. Figure 5.1 shows the conditional
mean of outcome y given Z, where every unit with Z greater than some cutoff
level c gets treatment (X = 1) and every unit with Z less than c is untreated
(X = 0). The data we see is shown as solid lines, and the data needed to es-
timate the average treatment effect is shown as dotted lines. In this figure, the
treatment effect is negative for Z < b and increasing in Z. But we can’t estimate
the treatment effect everwhere on the interval [a, d], since we cannot distinguish
this picture from one with identical solid lines and different dashed lines in figure
5.2 where the treatment effect is declining in Z and is actually negative for some
treated units with high Z. In both graphs, however, we can estimate the treatment
effect at exactly one point, where we see both the outcome and the counterfactual;
at the point Z = c. This is true as long as the curves are continuous at that point
and the value of Z cannot be manipulated by units to determine treatment status
(i.e. units on either side of c are exchangeable).

Examples of assignment and treatment congenial to this estimation technique
include share of votes received in a US Congressional election by the Democratic
candidate as Z, which induces a clear discontinuity in XT , whether a Democrat

105
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Figure 5.1: A picture for the regression discontinuity design.
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Figure 5.2: An alternative picture for the regression discontinuity design, chang-
ing only unobserved counterfactuals.
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occupies the office the following term. Then XT may affect various outcomes y,
if Democratic and Republican candidates actually differ in close races (Lee 1993;
2008). DiNardo and Lee (2002) use the share of votes received for a union as Z,
and find little effect of unionization in these evenly split firms. Note that unions
may may affect the survival of a firm (but do not seem to), and they point out that
the union wage premium y can be consistently estimated only if survival is not
affected (no differential attrition around Z0).

The standard treatment of RD is Hahn et al. (2001), who clarified the link
to IV methods. Recent papers by Imbens and Lemieux (2008), Lee and Card
(2008), and McCrary (2008) discuss some important practical issues related to
RD designs.

Many authors stress a distinction between “sharp” and “fuzzy” RD. In sharp
RD designs, the level of treatment rises from zero to one at Z0, as in the case
where treatment is having a Democratic representative in the US Congress, or
establishing a union, and a winning vote share defines Z0. In fuzzy RD designs,
the level of treatment increases discontinuously, or the probability of treatment
increases discontinuously, but not from zero to one, so we may want to deflate
by the expected increase in XT at Z0 in constructing our estimate of the causal
impact of a one-unit change in XT .

In sharp RD designs, the jump in y at Z0 is the estimate of the causal impact
of XT at Z0. In a fuzzy RD design, the jump in y divided by the jump in XT at Z0

is the local Wald estimate (equivalent to a local IV estimate) of the causal impact.
Note that the local Wald estimate reduces to the jump in y at Z0 in a sharp RD
design as the jump in XT is one, so the distinction between fuzzy and sharp RD
is not that sharp.

Some authors, e.g. Shadish et al. (2002; page 229), seem to characterize as
fuzzy RD a wider class of problems where the cutoff itself may not be sharply
defined, but without a true discontinuity, there can be no RD. The fuzziness in
fuzzy RD arises only from probabilistic assignment of XT in the neighborhood
of Z0. There is still a sharp discontinuity in the expected level of treatment at a
cutoff, which is how the treatment effect is identified.

5.1 Key assumptions and tests
The assumptions that allow us to infer a causal effect on y due to an abrupt change
in XT at Z0 are that the change in XT at Z0 is truly discontinuous, Z is observed
without error (See also Lee and Card 2008), y is a continuous function of Z at
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Z0 conditional on treatment status for each individual, and that individuals are not
sorted nonrandomly with respect to Z in the neighborhood of Z0 (for example,
based on their responsiveness to treatment). None of these assumptions can be
directly tested, but there are diagnostic tests that should always be employed.

The first is to test the null that no discontinuity in treatment occurs at Z0, since
without identifying a jump in XT we will be unable to claim to identify the causal
impact of said jump. The second is to test that there are no other extraneous dis-
continuities in XT or y away from Z0, since this would call into question whether
the functions would be smooth through Z0 in the absence of the dinscontinuous
assignment of treatment. The third and fourth test that predetermined character-
istics and the density of Z exhibit no jump at Z0, since these call into question
the exchangeability of observations on either side of Z0. Then the estimate itself
usually supplies a test that the treatment effect is nonzero (y jumps at Z0 because
XT jumps at Z0).

Abusing notation somewhat so that ∆ is an estimate of the discontinuous jump
in a variable, we can enumerate these tests as:

1. ∆XT (Z0) 6= 0

2. ∆XT (Z 6= Z0) = 0 and ∆y(Z 6= Z0) = 0

3. ∆XC(Z0) = 0

4. ∆f(Z0) = 0

5. ∆y(Z0) 6= 0 or
(

∆y(Z0)
∆XT (Z0)

)
6= 0

5.2 Methodological choices
Estimating the size of a discontinuous jump can be accomplished by comparing
means in small bins of Z to the left and right of Z0, or via a regression with various
powers of Z, an indicator D for Z > Z0, and interactions of all Z terms with D
(estimating a polynomial in Z on both sides of Z0, and comparing the intercepts
at Z0). However, since the goal is to compute an effect at precisely one point (Z0)
using only the closest observations, the standard approach is to use local linear
regression, which minimizes bias (Fan and Gijbels 1996). In Stata 10 and later,
this is done with the lpoly command; users of previous versions of Stata can use
locpoly (findit locpoly) described by Gutierrez et al. (2003).
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Having chosen to use local linear regression, other key issues are the choice of
bandwidth and kernel. Various techniques are available for choosing bandwidths
(Fan and Gijbels 1996, Stone 1974; 1977), and the triangle kernel has good prop-
erties in the RD context, due to being boundary optimal (Cheng et al. 1997).

There are several rule-of-thumb bandwidth choosers and cross-validation tech-
niques for automating bandwidth choice, but none is foolproof. McCrary (2008)
contains a useful discussion of bandwidth choice, and asserts that there is no sub-
stitute for visual inspection comparing the lpoly smooth with the pattern in a
scatter graph. Imbens and Kalyanaraman (2009) provides an optimal band-
width (to minimize mean squared error) for the most common type of design.

Whether we use a rule-of-thumb bandwidth, a cross-validated bandwidth, or
a bandwidth deemed optimal for some set of models, we want to test whether
estimates are robust to such a bandwidth choice. Because different bandwidth
choices can produce different estimates, the researcher should report at least three
estimates as an informal sensitivity test: one using the preferred bandwidth, and
estimates using twice and half the preferred bandwidth.

5.3 Testing assumptions
The same methodological choices apply in many of tests of required assumptions.
While the assumptions cannot be directly verified, as in IV, we can provide evi-
dence supporting or undermining each of the assumptions.

5.3.1 Test XT jumps at Z0

The identifying assumption is that XT jumps at Z0 due to some known legal or
program design rules, but we can test that assumption easily enough. A standard
approach to computing standard errors is to bootstrap the local linear regres-
sion, which requires wrapping the estimation in a program, as shown below.

program discont, rclass
version 10
syntax [varlist(min=2 max=2)] [, *]
tokenize ‘varlist’
tempvar z f0 f1
qui g ‘z’=0 in 1
local opt "at(‘z’) nogr k(tri) deg(1) ‘options’"
lpoly ‘1’ ‘2’ if ‘2’<0, gen(‘f0’) ‘opt’
lpoly ‘1’ ‘2’ if ‘2’>=0, gen(‘f1’) ‘opt’
return scalar d=‘=‘f1’[1]-‘f0’[1]’
di as txt "Estimate: " as res ‘f1’[1]-‘f0’[1]
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eret clear
end

In the program, the assignment variable Z is assumed to be defined so that
the cutoff Z0 = 0 (easily done with a single replace or generate command
subtracting Z0 from Z). The triangle kernel is used, and the default bandwidth is
chosen by lpoly, which is probably suboptimal for this application. The local
linear regressions are computed twice, once using observations on one side of the
cutoff, for Z < 0, and once for Z ≥ 0. The estimate of the jump uses only the
predictions at the cutoff Z0 = 0, so these are the only values computed by lpoly.

We can easily generate data to try this example program out:

ssc inst rd, replace
net get rd
use votex if i==1
ren lne y
ren win xt
ren d z
foreach v of varlist pop-vet {
ren ‘v’ xc_‘v’
}
bs r(d): discont y z

In a more elaborate version of this program called rd (which also supports ear-
lier versions of Stata), available by typing ssc inst rd, replace in Stata,
the default bandwidth is selected to include at least 30 observations in estimates
at both sides of the boundary; other options are also available. Try findit
bandwidth to find more sophisticated bandwidth choosers for Stata. The key
point is to use the at() option so that the difference in local regression predic-
tions can be computed at Z0.

A slightly more elaborate version of this program would save local linear re-
gression estimates at a number of points, and offer a graph:

program discont2, rclass
version 10
syntax [varlist(min=2 max=2)] [, s(str) Graph *]
tokenize ‘varlist’
tempvar z f0 f1 se0 se1 ub0 ub1 lb0 lb1
su ‘2’, meanonly
local N=round(100*(r(max)-r(min)))
cap set obs ‘N’
qui g ‘z’=(_n-1)/100 in 1/50
qui replace ‘z’=-(_n-50)/100 in 51/‘N’
local opt "at(‘z’) nogr k(tri) deg(1) ‘options’"
lpoly ‘1’ ‘2’ if ‘2’<0, gen(‘f0’) se(‘se0’) ‘opt’
qui replace ‘f0’=. if ‘z’>0
qui g ‘ub0’=‘f0’+1.96*‘se0’
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qui g ‘lb0’=‘f0’-1.96*‘se0’
lpoly ‘1’ ‘2’ if ‘2’>=0, gen(‘f1’) se(‘se1’) ‘opt’
qui replace ‘f1’=. if ‘z’<0
qui g ‘ub1’=‘f1’+1.96*‘se1’
qui g ‘lb1’=‘f1’-1.96*‘se1’
return scalar d=‘=‘f1’[1]-‘f0’[1]’
return scalar f1=‘=‘f1’[1]’
return scalar f0=‘=‘f0’[1]’
forv i=1/50 {
return scalar p‘i’=‘=‘f1’[‘i’]’
}
forv i=51/‘N’ {
return scalar n‘=‘i’-50’=‘=‘f0’[‘i’]’
}
di as txt "Estimate: " as res ‘f1’[1]-‘f0’[1]
if "‘graph’"!="" {
la var ‘z’ "Assignment Variable"
loc lines "|| line ‘f0’ ‘f1’ ‘z’"
loc a "tw rarea ‘lb0’ ‘ub0’ ‘z’ || rarea ‘lb1’ ‘ub1’ ‘z’"
‘a’ || sc ‘1’ ‘2’, mc(gs14) leg(off) sort ‘lines’
}
if "‘s’"!="" {
ren ‘z’ ‘s’‘2’
ren ‘f0’ ‘s’‘1’0
ren ‘lb0’ ‘s’‘1’lb0
ren ‘ub0’ ‘s’‘1’ub0
ren ‘f1’ ‘s’‘1’1
ren ‘lb1’ ‘s’‘1’lb1
ren ‘ub1’ ‘s’‘1’ub1
}
eret clear
end

In this version, the local linear regressions are computed at a number of points
(in the example, the maximum of Z is assumed to be 0.5, so the program uses
hundredths as a convenient unit for Z) on either side of the cutoff Z0 = 0, but
the estimate of a jump still uses only the two estimates at Z0 = 0. Note that the
s() option in the above program saves the local linear regression predictions (and
lpoly confidence intervals) to new variables that can then be graphed. Graphs
of all output are advisable, to assess the quality of the fit for each of several band-
widths. This program may also be bootstrapped, though recovering the standard
errors around each point estimate from bootstrap for graphing the fit is much
more work.

5.3.2 Test y and XC continuous away from Z0

While we need only assume continuity at Z0, and need no assumption that the
outcome and treatment variables are continuous at values of Z away from the
cutoff Z0 (i.e. ∆XT (Z 6= Z0) = 0 and ∆y(Z 6= Z0) = 0), it is reassuring if
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we fail to reject the null of a zero jump at various values of Z away from the
cutoff Z0 (or reject the null only in 5% of cases or so). Having defined a program
discont, we can easily randomly choose 100 placebo cutoff points Zp 6= Z0,
without replacement in the example below, and test the continuity of XT and y at
each.

bys z: g f=_n>1 if z!=0
g u=uniform()
sort f u
replace u=(_n<=100)
levelsof z if u, loc(p)
foreach val of local p {
cap drop newz
g newz=z-‘val’
bootstrap r(d), reps(100): discont y znew
bootstrap r(d), reps(100): discont xt znew
}

5.3.3 Test XC continuous around Z0

If we can regard an increase in treatment XT as randomly assigned in the neigh-
borhood of the cutoff Z0, then predetermined characteristics XC such as race or
sex of treated individuals should not exhibit a discontinuity at the cutoff Z0. This
is equivalent to the standard test of randomization in an experimental design, us-
ing a test of the equality of the mean of every variable in XC across treatment and
control groups (see help hotelling in Stata), or the logically equivalent test
that all the coefficients on XC in a regression of XT on XC are zero. As in the
experimental setting, in practice the tests are usually done one at a time with no
adjustment for multiple hypothesis testing (see help mtest in Stata).

In the RD setting, this is simply a test that the measured jump in each prede-
termined XC is zero at the cutoff Z0, or ∆XC(Z0) = 0 for all XC . If we fail to
reject that the measured jump in XC is zero, for all XC , we have some additional
evidence that observations on both sides of the cutoff are exchangeable, at least in
some neighborhood of the cutoff, and we can treat them as if they were randomly
assigned treatment in that neighborhood.

Having defined the programs discont and discont2, we can simply type:

foreach v of varlist xc* {
bootstrap r(d), reps(100): discont ‘v’ z
discont2 ‘v’ z, s(h)
sc ‘v’ z, mc(gs14) sort || line h‘v’0 h‘v’1 hz, name(‘v’)
drop hz
}
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5.3.4 Test density of Z continuous at cutoff
McCrary (2008) gives an excellent account of a violation of exchangability of
observations around the cutoff. If individuals have preferences over treatment and
can manipulate assignment, for instance by altering their Z or misreporting it,
then individuals close to Z0 may shift across the boundary. For example, some
non-randomly selected subpopulation of those who are nearly eligible for food
stamps may misreport income, while those who are eligible do not. This creates a
discontinuity in the density ofZ atZ0. McCrary (2008) points out that the absence
of a discontinuity in the density of Z at Z0 is neither necessary nor sufficient
for exchangability, but a failure to reject the null hypothesis that the jump in the
density of Z at Z0 is zero is reassuring nonetheless.

McCrary (2008) discusses a test in detail, and advocates a bandwidth chooser.
We can also adapt our existing program to the purpose by using kdens (on SSC)
to estimate the density to the left and right of Z0:

kdens z if z<0, ul(0) gen(f0) at(z) tri nogr
count f0 if z>=0
replace f0=f0/r(N)*‘=_N’/4
kdens z if z>=0, ll(0) gen(f1) at(z) tri nogr
count f1 if z<0
replace f1=f1/r(N)*‘=_N’/4
generate f=cond(z>=0,f1,f0)
bootstrap r(d), reps(100): discont f z
discont2 f z, s(h) g

Or better, we could wrap the density estimation inside the program that esti-
mates the jump, so that both are bootstrapped together; this approach is taken by
rd available from ssc inst rd, replace. McCrary’s own Stata code is
available on the web, however, so that should be preferred to the ad hoc method
described here.

5.3.5 Treatment Effect Estimator
Having defined the program discont, we can simply:

bootstrap r(d), reps(100): discont y z

to get an estimate of the treatment effect in a “sharp” RD setting where XT jumps
from zero to one at Z0. For a “fuzzy” RD design, we wish to compute the jump
in y scaled by the jump in XT at Z0, or the local Wald estimate, for which we
need to modify our program to estimate both discontinuities. The program rd
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available from ssc inst rd, replace does this, but the idea is illustrated
in the program below, using the previously defined discont program twice.

prog lwald, rclass
version 10
syntax varlist [, w(real .06) ]
tokenize ‘varlist’
di as txt "Numerator"
discont ‘1’ ‘3’, bw(‘w’)
loc n=r(d)
return scalar numerator=‘n’
di as txt "Denominator"
discont ‘2’ ‘3’, bw(‘w’)
loc d=r(d)
return scalar denominator=‘d’
return scalar lwald=‘n’/‘d’
di as txt "Local Wald Estimate:" as res ‘n’/‘d’
eret clear
end

This program takes three arguments, the variables y, XT , and Z, assumes
Z0 = 0, and uses a hardwired default bandwidth of 0.06. Note that the default
bandwidth selected by lpoly is inappropriate for these models, since we do not
use a Gaussian kernel, and are interested in boundary estimates. The rd program
on SSC is similar in spirit to the above, though it offers more options and does not
require you to type in the whole program.

5.4 Examples
Voting examples abound. A novel estimate in Nichols and Rader (2007) mea-
sures the effect of electing as a Representative a Democratic incumbent versus a
Republican incumbent on a district’s receipt of federal grants:

ssc inst rd, replace
net get rd
use votex if i==1
g lnpc=lne-ln(votingpop)
rd lnpc d, gr bw(.04)
bs: rd lnpc d, x(pop-vet)

The above estimates that the marginally victorious Democratic incumbent brings
roughly 20% less in federal grant dollars per voter to his home district than a
marginally victorious Republican incumbent. However, we cannot reject the null
of zero difference, and that is true for a variety of bandwidth choices (figure 5.3
shows the small insignificant effect). Note that the above is a sharp RD design,
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Figure 5.3: RD voting example

but the Wald estimator can be also used to estimate the effect, since the jump in
win at 50% of vote share is one, and dividing by one has no impact on estimates.

Many good examples of fuzzy RD designs concern educational policy or in-
terventions, e.g. van der Klaauw (2002) or Ludwig and Miller (2007). Many
educational grants are awarded using deterministic functions of predetermined
characteristics, lending themselves to evaluation using RD. For example, some
US Department of Education grants are awarded to districts with poverty (or near-
poverty) rates above a threshold, as determined by data from a prior Census, which
satisfies all of the requirements for RD, though the size of the discontinuity in
funding may often be insufficient to identify an effect. In many cases, a power
analysis is warranted to determine the minimum detectable effect.

Returning to the Card (1995) example of the effect of education on earnings,
we can imagine exploiting a discontinuity in the availability of college to residents
of certain US states at the state boundary. College applicants who live 4.8 miles
and 5 miles from a college may look very similar in various observable charac-
teristics, but if a state boundary separates them at 4.9 miles from the college, and
the college is a state institution, they may face very different probabilities of ad-
mission or tuition costs. The data in Card (1995) do not support this strategy, of
course, since we would need to know the exact locations of all individuals rel-
ative to state boundaries, but it helps to clarify the assumptions that justify the
IV approach. We need to assume that location relative to colleges is randomly
sprinkled over potential applicants, which seems questionable (Black 1999), es-
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pecially when one considers including parental education in the model, but that is
the assumption we maintained in the IV example.

5.5 Extensions
In many cases, there is a known discontinuity in treatment probability but there
may be other discontinuities at the same point, for example if the discontinuity
happens at age 65 or age 18 (focal age of retirement or age of majority in the US);
but see Card et al. (2008; 2009) on age 65. In such a case, we may be worried
that cases on either side of the discontinuity are not exchangeable because other
factors change (i.e. there is more than one treatment that discontinuously jumps).
However, we may identify a causal impact by using a panel including observations
before and after a new treatment is introduced. In that case, we need to maintain
the usual assumptions for a panel regression, so we have lower internal validity,
but we may sidestep confounding other treatment effects with the one of interest.
The simplest hybrid of RD with panel methods just subtracts off the estimated
jump in outcomes before the new treatment is introduced from the estimated jump
in outcomes after the new treatment is introduced, and then divides by the jump
in the new treatment (Nichols and Sorensen 2009, Beaule et al. 2009).

As with matching/reweighting, panel, and IV methods, we may be interested
in the distribution of treatment effects, rather than a mean treatment effect. Frölich
and Melly (2008) shows how to estimate quantiles of the response using a discon-
tinuity design.



Chapter 6

Concluding Remarks

Tabulation of results from most data where the “treatment” variables (the causal
factors) are not randomly assigned to units can produce very misleading inference.
For example, comparing mean earnings of those who participate in a program (or
go to college) to those who don’t, does not tell you anything about the true effect
of participation.

When experiments are infeasible, exploring data using quasi-experimental
methods is the only reasonable option for estimating a causal effect. Quasi-
experimental methods discussed in this book may even be preferred even when
an experiment is feasible, particularly if a marginal treatment effect (the expected
effect of a small increase in a treatment variable, for the subpopulation likely to
receive the additional treatment) is of interest. However, the methods can suffer a
number of severe problems when assumptions are violated, even weakly violated.
For this reason, the details of implementation are frequently crucial, and a kind of
cookbook or checklist for verifying essential assumptions are satisfied has been
provided in this book for the interested (or budding) researcher. As the topics dis-
cussed continue to be active research areas, this cookbook should be taken merely
as a starting point for further explorations of the applied econometric literature on
the relevant subjects.

The focus here has been on getting a good estimate of a particular effect of
some set of “treatments” which have already been identified, with a functional
form that comes from theory. In many empirical papers, the focus is on identifying
which of a set of possible explanatory variables seems to have most “explanatory
power” for some outcome, and this approach is a search for causes of some known
outcome, rather than a measurement of some causal effect. This “model building”
approach is fundamentally different (from the approach here, where one starts
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with a model and then goes to the data), but even if you take this approach, you
would be wise to reconceptualize the model you wind up with in experimental
terms and then look for a quasi-experimental estimator. I.e. ask yourself what
the counterfactual is—what would a one-unit change in some variable mean in an
experimental setting, holding other factors constant, and how might that effect be
measured without an experiment?

On the other hand, ideas from the “model building” approach are equally
crucial to add to the standard econometric approach adopted here of assuming
a model a priori. An assumed model is never the truth, and a wise researcher tests
assumptions not only with a few statistics, but by estimating different models and
the same model in different samples (possibly subsamples of the estimation sam-
ple) to assess the robustness of results to small variations in design.

As a complement to statistical tests of required assumptions, looking for ro-
bustness in an estimator is crucial. We know assumptions are routinely violated,
so we would like to know that the results are not too different if our assumptions
are not quite right. For example, we may assume no spillover effects or homoge-
neous treatment effects, but we know these are not the case. One solution can be
modifying the research design, but choosing an estimator that is reasonably robust
to small violations is always a good idea; re-estimation in subsamples to assess
robustness is a good practical rule of thumb.

The question of relative cost has not figured in this book, but if we seek to
estimate the effects of various treatments relative to some baseline (or control
condition, or placebo, or what have you), we should also care about relative cost.
Reframing effects on outcome variables in terms of constant-cost interventions is
a useful mechanism; for example if you evaluate three types of educational inter-
ventions that cost a hundred, two hundred, and three hundred dollars a day, then
examining the relative impact of six days, three days, and two days (respectively)
of each program seems a useful comparison, since each of those interventions
costs six hundred dollars and the outcome gains per dollar are directly compara-
ble.

There is also the possibility that the treatment has effects on quite different
outcomes than you anticipate, so you should always be aware of other poten-
tial outcomes, and estimate those effects where possible. This feature is well
known in the medical literature, but frequently forgotten in practical applications
of statistics or policy. For example, in the 1950s, weak evidence suggested that
giving diethylstilboestrol (DES) to pregnant women who had previously had mis-
carriages would increase the likelihood of a successful birth. This led to DES
being prescribed to millions of pregnant women, and many of their children later
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developed major health problems, including cancer, physical deformities, and in-
fertility (Apfel and Fisher 1986).

I wish introductory econometrics were required of every journalist and bureau-
crat. For all its warts, the framework of causal inference outlined in this book is
clearly superior to the status quo, observable in most research read by bureaucrats
and reported by journalists. I hope this book will help the reader become a more
discerning consumer, and careful producer, of causal inferences in practice. Un-
fortunately, to really understand these methods, you have to slog through trying
to estimate some effect yourself—luckily, you can count on help in that endeavor,
should you undertake it. Anyone who has gotten this far in the book can count on
a return email when posting a question on Statalist (see B.1.2), at least.
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Appendix A

Some Math Topics

There are a lot of good introductions to these topics, some of which are freely
available on the internet. But for those who like to have an introduction all in
one book, I have included the following summary of math you should know to
facilitate reading this book and the Stata manuals, or other similar books and
articles.

A.1 Matrix Algebra
Matrix algebra is usually introduced as a way to solve a system of n linear equa-
tions in k unknowns. Here the unknowns are x1 through xk with coefficients in
each of n equations.

b11x1 + b12x2 + . . .+ b1kxk = a1
...

bi1x1 + bi2x2 + . . .+ bikxk = ai
...

bn1x1 + bn2x2 + . . .+ bnkxk = an

This can be rewritten using matrix notation as

b11 b12 . . . b1k
...
bi1 bi2 . . . bik
...
bn1 bn2 . . . bnk




x1

x2
...
xk

 =



a1
...
ai
...
an
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or
Bx = a

using the definition of matrix multiplication.

A.1.1 Matrix Multiplication

A vector is an ordered list of n numbers (a1, ..., an), also seen as a point in an
n-dimensional space, or an arrow from the origin (0, ..., 0) to that point. The inner
product of two vectors is the sum of the product of each element in turn (the first
element of the first vector times first element of the the second vector, plus the
second element of the first vector times the second element of the second vector,
and so on), which is a scalar (a single number). Obviously, each vector has to
have the same number of elements (same dimension) in order to compute an inner
product. The inner product of a vector with itself is its length squared (viewing
the vector as an arrow).

The product of two matrices A and B is a matrix of inner products of row
vectors of A and column vectors of B. Thus the first matrix A must have as many
columns as there are rows in the second matrix B, in which case the matrices are
said to be conformable. The the product of an n× k matrix and a k×m matrix is
an n ×m matrix. Note that not only is AB not generally the same as BA (unlike
in scalar multiplication), but BA may not even be defined, if the dimensions of the
matrices are such that B and A are not conformable.

Writing two n-dimensional vectors v and w as column matrices, we can write
the inner product as v′w (a 1 by 1 matrix, or scalar) where v′ indicates the trans-
pose of v (swap rows for columns). The outer product is vw′ (an n by n matrix).
Two vectors v and w are said to be orthogonal if their inner product is zero, i.e.
v′w = w′v = 0. The inner product is also written v · w and called the dot prod-
uct. The inner product is a measure of the extent of a projection of one vector on
another (think of this as the shadow when the light source is right overhead with
respect to the second vector). The inner product v′w divided by the length of v
(this ratio is also a scalar) times v is called the component of w along v, shown in
figure A.1 (similarly, the component of w along v is the ratio of the inner product
v′w to the length of w, times w). Thus, the projection of v on an orthogonal vector
u always has length zero, as it should, so the component is the zero vector.

Note that the sum of two vectors or matrices is the elementwise sum, or the
sum of the corresponding elements, so matrices and vectors must have the same
dimensions to be added. The geometric interpretation of vector addition can some-
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times be useful (shown in figure A.1 as the diagonal of a parallelogram, or the
result of moving the tail of one vector to the head of another).
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Figure A.1: Geometric properties of vectors.

Allowable operations in a system of equations (changing the order of equa-
tions, multiplying an equation by a constant, adding a multiple of one equation to
another) are recast as operations on the matrix of coefficients B in Gauss-Jordan
elimination, which results in a product of matrices premultiplying both sides of
the equation. If n = k and the matrix is invertible, one can write the solution as

x = B−1a

which corresponds to performing all the operations required to make the matrix
multiplying x the identity matrix. 1 If the matrix is not invertible (the inverse does
not exist) then the system of linear equations may have no solutions, or infinitely
many.

1The identity matrix I is a n × n matrix with ones along the diagonal and zeros elsewhere,
which when multiplied by any conformable matrix A, gives A as the product, i.e. IA = A and
AI = A for any matrix A.
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A.1.2 Geometric interpretation and Rank
Forget about the system of linear equations for a moment. More generally, one
can view a matrix B multiplying a vector of unknowns (or variables) x as a trans-
formation of the space, rotating and stretching any vector plugged in for x is a
particular way.

Alternatively, one can view the vector x multiplying B in Bx = a as taking a
weighted sum of the columns of B (a weighted sum where weights could be zero
or negative, and need not sum to one, also called a linear combination). This is
the most useful geometric view for regression purposes, since the columns of X
in a regression model like y = Xb are variables with some interpretation attached
to each, and the elements of b are the “effect” of each variable on the outcome y.

Each column in a n × k matrix B is a n-dimensional vector; each row is a
k-dimensional row vector. Linear combinations of the columns of a matrix B are
said to span a space if any vector in the space2 can be expressed as a linear com-
bination of those column vectors. The set of vectors needed to span a space are
called a basis of the space. The column rank of the matrix is the largest dimension
of spaces spanned in this way; the column rank is the number of linearly inde-
pendent column vectors in the matrix. The row rank is defined analogously, and
the rank of a matrix is the minimum of those two ranks. The rank of a matrix is
thus the dimension of a space that can be generated via linear combinations of the
vectors in the matrix.

A.1.3 Inverses
A generalized inverse A− for a matrix A satisfies AA−A = A. A square matrix
A (with as many columns as rows, corresponding to a system of k equations in
k unknowns) has an inverse A−1 that satisfies A−1A = AA−1 = I if and only
if it is of full rank (rank k). A generalized inverse need not be a unique solution
to AA−A = A, but the inverse is a unique solution to A−1A = AA−1 = I .
The inverse of A is one over the determinant |A|, a scalar, times the adjoint matrix
adj(A) (neither term is defined here, as it would take several pages, and definitions
are ubiquitous on the internet).

A−1 =
1

|A|
adj(A)

2A vector space is a set of vectors with the operations of addition and scalar multiplication that
is closed under those operations; that is, if v and w are in the set, then u + v is in the set and ru is
in the set for any real number r.
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Evidently, the determinant |A| is nonzero whenever the inverse is defined, i.e.
whenever A has full rank.

A square matrix which has less than full rank, and therefore has no inverse, is
said to be singular. A scalar r is said to be an eigenvalue of a matrix A if A−rI is
singular. An n× n square matrix A is singular if and only if zero is an eigenvalue
of A. With r an eigenvalue of A, a nonzero vector v of dimension n that solves
(A − rI)v = 0 is called an eigenvector of A corresponding to the eigenvalue
r. The determinant of (A − rI) is a polynomial of order n, which has n roots,
or zeros, such that |A − rI| = 0. That polynomial is called the characteristic
polynomial of A and can be solved to find eigenvalues and eigenvectors (note that
roots need not be distinct, and some roots may be complex numbers). The sum of
eigenvalues is equal to the trace of A (sum of diagonal entries) and the product of
eigenvalues equals |A| (so the role of a zero eigenvalue is clear here).

A symmetric matrix is a square matrix A such that A′ = A. A symmetric
matrix has all real eigenvalues, and eigenvectors corresponding to distinct eigen-
values are orthogonal. If there are repeated roots for the characteristic polynomial
of A so there are non-distinct eigenvalues, there is still a nonsingular matrix M
whose columns are eigenvectors of A such that all its columns are mutually or-
thogonal. Further, M−1 = M ′ so M is said to be an orthogonal matrix. Also, the
matrix M−1AM is a diagonal matrix with the corresponding eigenvalues down
the diagonal.

A.1.4 Quadratic Forms
A quadratic form is a polynomial in many variables where every term has degree
two, for example

f(x1, x2) = ax2
1 + bx1x2 + cx2

2

with two variables x1 and x2 and constant coefficients a, b, and c, or

f(x1, x2, x3) = a1x
2
1 + a2x1x2 + a3x

2
2 + a4x1x3 + a5x2x3 + a6x

2
3

with three variables. Every quadratic form can be written as a matrix product

f(x) = x′Ax

and without loss of generality we can let A be symmetric. That is, a quadratic
form

f(x1, x2) = ax2
1 + bx1x2 + cx2

2
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can be represented as the matrix product

f(x1, x2) =

(
x1

x2

)(
a b/3

2b/3 c

)(
x1

x2

)

or

f(x1, x2) =

(
x1

x2

)(
a b/2
b/2 c

)(
x1

x2

)

but it is much more convenient to write it so that the matrix of coefficients A is
symmetric.

A quadratic form is called positive definite if f(x) > 0 for all x, and any
matrix A that generates that quadratic form is also called positive definite. A
quadratic form is called negative definite if f(x) < 0 for all x, and likewise for
associated matrices. A quadratic form is called positive semidefinite if f(x) ≥ 0
for all x and negative semidefinite if f(x) ≤ 0 for all x. A quadratic form is
called indefinite if f(x) > 0 for some x and f(x) < 0 for some other x. These
properties correspond to some common shapes of three-dimensional surfaces that
have special significance, in that these shapes capture most of the important shapes
an arbitrary surface can take on in a neighborhood of some point (i.e. these are
five important classes of curvature near a point).

The eigenvalues of symmetric matrices A correspond to these properties. That
is, a symmetric matrix A is positive definite if and only if all the eigenvalues of A
are strictly positive. A symmetric matrixA is negative definite if and only if all the
eigenvalues of A are strictly negative, a symmetric matrix A is positive semidef-
inite if and only if all the eigenvalues of A are weakly positive (r ≥ 0∀r), and
negative semidefinite if and only if all the eigenvalues of A are weakly negative
(r ≤ 0∀r). A symmetric matrix A is indefinite if and only if some eigenvalues of
A are positive and some negative.

A.2 Calculus

The calculus is a handy tool, nothing more, and you need not understand all of
its intricacies to be a good researcher, but a cursory understanding of the major
concepts is absolutely essential.
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A.2.1 Derivatives and Gradients
The derivative of a function captures the slope of the function at each point, or
equivalently the slope of a tangent linear function. In figure A.2, the derivative at
x = 2 is the slope of the curve at that point or the slope of the tangent line at that
point, which is four; at x = 3 the slope is two and at x = 3 the slope is zero (the
tangent is horizontal); at higher values of x the slope would be negative.
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Figure A.2: The derivative as the slope of a linear approximation.

For a real-valued function of a scalar F (x) the derivative may be written f(x)
or F ′(x) or dF/dx or ∂F/∂x or various other ways. One useful way is to write
DxF (x) meaning the derivative with respect to x of F (x) because the derivative
can be thought of as a linear operator:

Dx [aF (x) + bG(x)] = a [DxF (x)] + b [DxG(x)]

where F and G are functions and a and b are constants, and one can simply dis-
tribute the Dx operator across the sum. The derivative of a function is itself a
function, so one can take the derivative of a derivative, and the result is the second
derivative. One can compute third and higher-order derivatives likewise.

For a real-valued function F (x) of a vector x, the derivative is a set of func-
tions, called the gradient, measuring the slope in any of the various directions one
might shift the vector x. For example, if the vector x is two dimensional and we
write the vector x as an ordered pair (x1, x2), we can imagine moving in the di-
rection of x1, e.g. from (x1, x2) to (x1 + c, x2), or in the direction of x2, e.g. from
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(x1, x2) to (x1, x2 + c). Each of those directions defines a partial derivative, and
there are as many of them as there are dimensions of the vector x. In other words,
the gradient of the function F (x) of a vector x has as many dimensions as the
vector x, and we can say the gradient function is vector-valued. We write

∇F (x) = DxF (x) =
∂F (x)

∂x
=


∂F (x)
∂x1...
∂F (x)
∂xn


and note that the derivative of a vector-valued function is a matrix. Thus the
second derivative of a real-valued function F (x) of an n-dimensional vector x
is an n by n matrix of “second partials” or derivatives in each of the n possible
directions associated with changes to x of each of the (partial) derivatives in each
of the n possible directions associated with changes to x.

Some simple rules for derivatives are helpful to bear in mind at all times:

Dxax
b = abxb−1

Dx lnx =
1

x

Dx expx = expx

The chain rule gives the derivative of f(g(x)) for a function f of the value g of a
function g(x) as ∂f

∂g
∂g(x)
∂x

, and the product rule gives the derivative of f(x)g(x) for

a product of two functions f and g of x as ∂f(x)
∂x

g(x) + ∂g(x)
∂x

f(x).
Not all functions have well-defined gradients, but most models make exten-

sive use of those that do, called “differentiable” functions. In fact, most models
make use of functions that have continuous second and higher derivatives, called
“smooth” functions. A slightly smaller class of “analytic” functions has a con-
vergent3 Taylor series, meaning that the function F (x) can be represented to arbi-
trarily good precision by a well-defined series with terms that are polynomial in x
and have coefficients given by the derivatives of F (x).

3An analytic function has a convergent Taylor series in the complex field. As Apostol (1974)
points out, a function may have an apparently convergent Taylor series in the reals, and the series
may converge to a different function.
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A.2.2 Taylor Series
The first-order Taylor expansion of a function f(x) around x = x0 is written

f(x0 + h) = f(x0) +
∂f

∂x
(x0)h+R2

where there is a number a between zero and h such that 1
2

[
∂2f
∂x2 (x0 + a)

]
h2 = R2.

Or it can be written

f(x) = f(x0) +
∂f

∂x
(x0)(x− x0) +R2

letting x = x0 + h and we can see how it is linear in x and approximates f(x) in
a neighborhood of x0.

The ratio
R2

h2

approaches zero as h approaches zero, so we say that R2 has order less than h2,
or write R2 = o(h2) (called “little oh” notation), meaning that R2 converges to
zero faster than h2 as h approaches zero. This means that the first-order Taylor
approximation is very good for small h (i.e. close to x = x0), e.g. if h = 0.001
then the error is about one part in a million.

The second-order Taylor expansion of a function is an even better approxima-
tion:

f(x0 + h) = f(x0) +

[
∂f

∂x
(x0)

]
h+

1

2
h′
[
∂2f

∂x2
(x0)

]
h+R3

because the error of approximationR3 is of order o(h3), meaning that if h = 0.001
then the error is about one part in a billion.

We could also write the second-order Taylor approximation as:

f(x) = f(x0) +

[
∂f

∂x
(x0)

]
(x− x0) +

1

2
(x− x0)′

[
∂2f

∂x2
(x0)

]
(x− x0) +R3

or with one variable in x write:

f(x) = f(x0) +

[
∂f

∂x
(x0)

]
(x− x0) +

1

2

[
∂2f

∂x2
(x0)

]
(x− x0)2 +R3

You will rarely see Taylor approximations beyond the second order because
the second order approximation captures the local curvature around x0. In fact,
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the first order approximation is enough for most purposes because the error in
that case of order h2 = (x − x0)2 not only gets arbitrarily close to zero but it is
effectively flat, meaning further improvements are negligible, as x gets close to
x0.

A.2.3 Optimization

If you want to find the maximum or minimum (both sometimes referred to as
an extremum, or optimum) of a function, one useful method is to note that its
derivative is zero at that point, as at the point x = 4 in figure A.2. If it were not,
we could improve on the value of the function by moving a tiny bit in a direction
in which the derivative is positive. In fact, the derivative may be zero at other
points as well, but extremums for smooth functions can often be found fairly easy
by setting the derivative equal to zero and solving for x. For a strictly convex
function, such as a quadratic (or a positive definite quadratic form), the derivative
is zero only at the minimum, and similarly for a strictly concave function the
derivative is zero only at the maximum. In these cases, finding the optimum is
fairly easy.

More generally, we may find many points that satisfy the first order condition
that the derivative is zero at that point. We can then turn to a second order condi-
tion that the matrix of second partials, or Hessian, must be negative semidefinite
at a local maximum and must be positive semidefinite at a local minimum. If it is
indefinite at a point where the first order condition is satisfied, the point is called
an inflection point, and is neither a local maximum nor minimum. If the Hessian
is negative definite the point is guaranteed to be a local maximum, and if it is posi-
tive definite the point is guaranteed to be a local minimum, but if it is semidefinite,
further investigation is required.

Constrained optimization where we optimize the function subject to an in-
equality g(x) ≤ 0 is similar, except that one of two things must be true: either
the constraint g(x) = 0 must be satisfied with equality and the function optimized
over the set where g(x) = 0, or there is an optimum in the interior where g(x) < 0
and the constraint does not bind. This increases the number of potential optimums
we have to compare. For more, see Simon and Blume (1994), e.g. Theorem 19.12
(though the proof using Farkas’ Lemma is unfortunately omitted).
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A.2.4 Integrals
The integral is the area under a curve, for a nonnegative function of a scalar vari-
able (area under a nonnegative surface is a multiple integral), and the antideriva-
tive in the sense that if f(x) if the derivative of F (x) then F (x) is the integral of
f(x). The integral is usually defined as the limit of Riemann sums, rectangular ar-
eas between a curve and the axis (for a nonnegative function—for a function that
dips below the axis, we subtract the areas where the curve dips below the axis)
with height given by some value of the function in a sequence of intervals, and we
let the number of intervals increase without bound by subdividing each interval,
and let the width of the largest interval decrease toward zero, to get an arbitrarily
good approximation to the area under the curve. If the limit of such a sequence
exists, it is called the Riemann integral.

A more general and related concept is the Lebesgue integral, constructed using
sets of measure zero and step functions. A subset T of an interval S on the real
line has measure zero, if, for any ε, T can be covered by a countable collection
of intervals such that the sum of the lengths of the intervals is less than ε. A
property which holds everywhere on S except on a set of measure zero is said to
hold almost everywhere on S, and a set U which is S less a set of measure zero is
dense on S (e.g. the set of irrational numbers is dense on the unit interval). A step
function is a function which is constant on each of k intervals:

s(x) = ck ∀x ∈ (xk−1, xk)∀k = 1, . . . , k

and its integral is defined as the area under its steps:∫ b

a
s(x)dx =

n∑
k=1

ck(xk − xk−1).

An upper function is the limit of a sequence of increasing step functions defined
on some interval S = (a, b) on the real line, where a sequence of increasing step
functions satisfies sn ≤ sn+1 everywhere on S, for all n. We write sn(x)↗ s(x)
to mean the sequence of increasing step functions has a limit s(x). The integral
of an upper function is: ∫ b

a
s(x) = lim

n→∞

∫ b

a
sn(x)

The Lebesgue integral for a function f = u − v where u and v are both upper
functions is given by

∫
f =

∫
u −

∫
v. In general,

∫
(u + v) =

∫
u +

∫
v and
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∫
cu = c

∫
u for any real number c and Lebesgue-integrable functions u and v.

The Lebesgue integral equals the Riemann integral when both exist, but some
functions are Lebesgue-integrable when the Riemann integral does not exist. See
Apostol (1974) for more detail.

Integration by parts is a trick, inverting the product rule for derivative, often
helpful for figuring out difficult integrals. If we write the product rule as

Dxf(x)g(x) =
∂f(x)

∂x
g(x) +

∂g(x)

∂x
f(x)

and integrate both sides, we get

f(x)g(x) =
∫ ∂f(x)

∂x
g(x)dx+

∫ ∂g(x)

∂x
f(x)dx

which we rewrite∫ ∂f(x)

∂x
g(x)dx = f(x)g(x)−

∫ ∂g(x)

∂x
f(x)dx

and this can be used to turn some very difficult integrals into easier problems.

A.2.5 Derivatives involving Integrals
The derivative of a definite integral is given by

∂

∂y

∫ b(y)

a(y)
f(x, y)dx =

∫ b(y)

a(y)

∂f

∂y
dx+ f(b(y), y)

∂b

∂y
− f(a(y), y)

∂a

∂y

when the limits of integration are functions of y. If the limits of integration are
not functions of y, then the last two terms are zero:

∂

∂y

∫ b

a
f(x, y)dx =

∫ b

a

∂f

∂y
dx

See also Apostol (1974), page 167 and page 283.
The rule is known as Leibniz’s rule, or as differentiation under the integral

sign. It can be used to evaluate tricky definite integrals, e.g.∫ π

0
ln(1− 2α cos(x) + α2)dx = 2π ln |α| ∀|α| > 1.

Feynman (1997) described seeing this use of the rule in Woods (1926) and re-
marked “because I was self-taught using that book, I had peculiar methods for
doing integrals,” and “used that one damn tool again and again.” (The memoir is
quoted at the mathworld.wolfram.com website entry on Leibniz’s rule, but I re-
member this Feynman quote from the 1985 edition, which I read in tenth grade;
there is clearly something very compelling about Feynman’s story.)
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A.2.6 Optimal Control
In an optimal control problem, we want to choose c at each point in time t to
optimize a function of the form

max
c(t)

∫ T

0
u(c,X, t)dt

with X is a “stock” that depends on the control variable c, i.e.

∂X

∂t
= f(c,X, t)

and we know X(0) = X0 and X(T ) = XT (the level of the stock at the beginning
and end of the problem). Here u represents a “flow” value, and we want to max-
imize (or minimize) the sum of flows over all t in [0, T ]. Rather than choosing
c at one point in time (or a finite number of values ci in a vector c), we want to
maximize over all functions c of t.

To solve this optimal control problem we set up a Hamiltonian:

H = u(c,X, t) + µf(c,X, t)

where µ is a function of time that captures the marginal value of an additional
unit of the stock X . The necessary conditions for an optimal solution, known as
Pontryagin’s maximum principle, are:

∂H

∂c
= 0

∂H

∂µ
=

∂X

∂t
∂H

∂X
= −∂µ

∂t

at each point in time.
For example, if we

max
c(t)

∫ T

0
e−ρt ln(c)dt

subject to
∂A

∂t
= rA− c
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and A(0) = 1 and A(T ) = 0, this is the problem of maximizing log consumption
(c) over a finite lifetime (until T ) with no bequest (assets are A). The Hamiltonian
is:

H = e−ρt ln(c) + µ(rA− c)
and the necessary conditions for a maximum are:

e−ρt

c
− µ = 0

∂A

∂t
= rA− c

rµ = −∂µ
∂t

at each point in time. The third equation is an ordinary differential equation with
the solution µ(t) = µ(0)e−rt and we can solve the first equations for c in terms of
µ then plug into the second equation:

c =
e−ρt

µ
= e(ρ+r)tµ−1

0

∂A

∂t
= rA− c = rA− e(r−ρ)tµ−1

0

or ∂A
∂t
− rA = −e(r−ρ)tµ−1

0

. This is an ordinary differential equation with the solutionA(t) = e(r−ρ)t (ρµ0)−1+
Bert where B is a constant which can be determined since we know A(0) = 1
and A(T ) = 0. The optimal consumption path is then

c(t) = e(r−ρ)t
(

ρ

1− e−ρT
)

where r is the interest rate and ρ is the discount rate and the term in parentheses is
a constant. If r > ρ optimal consumption rises exponentially over time, but r < ρ
implies optimal consumption falls exponentially over time.

We might also want to optimize over all future time t like so:

max
c(t)

∫ ∞
t0

u(c,X, t)dt

and all the same necessary conditions apply. An important class is the “au-
tonomous” problem

max
c(t)

∫ ∞
t0

e−ρtu(c,X)dt
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with exponential discounting and no t in the flow value u, which makes the prob-
lem simpler. See Léonard and Long (1992) for extensions and many useful exam-
ples.

The stochastic optimal control problem, for example where the state variables
X include random components or are observed with error, is a much harder prob-
lem with no general solution approach. The sufficient condition for an optimum,
the Hamilton-Jacobi-Bellman equation, is a partial differential equation that is dif-
ficult to solve even with numerical methods in some cases, and is not guaranteed
to exist. Using symmetry (Boyd III 1990) or local approximations (Crespo and
Sun 2002) may be an easier path to the global optima in many cases.

A.3 Probability
Probabilities are real-world concepts but also mathematical artifacts, so it can be
a bit tricky moving back and forth between the two worlds. A probability of some
event being observed is nonnegative, and the probability of some event and its
complement sum to one, i.e. P (A) +P (A) = 1, so either A happens or it doesn’t.
For a partition Ai of the space of possible events U such that

⋃
iAi = U and

∩iAi = ∅, the probabilities of each event sum to one, i.e.
∑
i P (Ai) = 1.

The probability that A happens and B happens is written P (A∧B) (or P (A∩
B)) and read “the probability of A and B.” The probability that A happens or
B happens is written P (A ∨ B) and read “the probability of A or B.” These are
usefully related via the equation P (A ∨ B) = P (A) + P (B)− P (A ∧ B) or the
Venn diagram, for example in figure A.3. Note that the probability of a red jack
is 2/52 and the probability of a face card with hearts is 3/52, but the probability of
either is 4/52=2/52+3/52-1/52, subtracting off the “double counted” jack of hearts.

The probability of an eventA conditional on another eventB is written P (A|B)
and equals P (A ∧B)/P (B) assuming P (B) is nonzero. The probability of a red
jack is 2/52 but if we condition on having drawn a face card with hearts, the prob-
ability is 1/3 (1/52 divided by 3/52). If two events A and B are independent,
P (A ∧ B) = P (A)P (B), and P (A|B) = P (A). The probability of rolling a
six and then another six with a fair die is 1/6 times 1/6, because the two events
are independent. Bayes Rule comes straight from the definition of conditional
probability:

P (A|B) = P (A ∧B)/P (B)

P (B|A) =
P (B ∧ A)

P (A)
=
P (A ∧B)

P (A)
=
P (A|B)P (B)

P (A)



136 APPENDIX A. SOME MATH TOPICS

Red jacks
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Face cards with hearts
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Diamond
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Figure A.3: Probabilities of events as areas on a Venn diagram.

These kinds of discrete problems often involve counting numbers of arrange-
ments using combinations and permutations. Many cases involve a random vari-
able, which is a function mapping events to real numbers (for example, mapping
the draw of an Ace to 1, a numbered card to its number, and a jack, queen, or
king, to 11, 12, and 13, respectively). Then we can talk about the probability
associated with numbers, with the numbers ordered on a line. The calculated
probability distributions, with P (Ai) given for any event Ai, are often represented
via a histogram, or bar graph of probabilities versus possible values of the random
variable. This is sometimes called a probability distribution function (pdf) though
for a discrete variable, probability mass function would be less ambiguous.

For example, figure A.4 shows the histogram labeled “pdf” for the number of
heads that come up when flipping a fair coin 10 times (called repeated Bernoulli
trials with probability one half). The cumulative probability distribution function
(cdf) is the probability of observing a value less than or equal to x, and is the inte-
gral of the pdf (which is why capital letters are often used to denote a cumulative
distribution function and lower case letters a probability distribution function).

For most applications of probability theory to data, we are concerned with the
chance that some number falls in a range, where any real number (or vector of
real numbers) may be drawn. I.e. the random variable maps to real numbers (or
vectors), not a finite set of possible outcomes.
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Figure A.4: Histogram (pdf) and distribution function (cdf) of a binomial distri-
bution.

A.3.1 Density and Distribution
If a random variableX maps events to real numbers, then we define the cumulative
distribution function (cdf) as

F (x) = Pr(X ≤ x)

which is a non-decreasing, right-continuous function with limit 0 as x goes to neg-
ative infinity and 1 as x goes to positive infinity. If F (x) is absolutely continuous,
i.e. its derivative exists and integrating the derivative gives us the cdf back again,
then the random variable X is said to have a probability density function (pdf) or
simply density defined by

f(x) =
∂F

∂x
(x)

Any event is mapped to a subset of real numbers A and we can calculate the
probability of the event as

Pr(A) =
∫
x∈A

dF (x) =
∫
A
dF (x)

given by the Lebesgue integral. If the density exists, we can write this as

Pr(A) =
∫
x∈A

f(x)dx =
∫
A
f(x)dx.

In most cases we can implicitly define quantiles xq such that F (xq) = q,
for example the median x0.5 with q = 0.5 such that the probability of observing
X > x0.5 or observing X < x0.5 is one half.
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A.3.2 Mean and Conditional Mean
The mean, or expectation, of a discrete random variable is just the weighted sum
of its values, with weights given by probabilities.

E(X) =
∑

xPr(X = x)

and for a continuous random variable, the analogous weighted sum

E(X) =
∫
xdF (x)

and therefore the expectation operator is linear. That is,

E(aX + b) = aE(X) + b

for any constants a and b. However, the expectation cannot in general pass through
nonlinear functions, so E(eX) 6= e(E(x) and E(XY ) 6= E(X)E(Y ) (though this
last is true if X and Y are independent).

For discrete random variables X and Y , the mean of Y conditional on X = x
is given by using conditional probabilities as weights:

E(Y |X) =
∑

yPr(Y = y|X = x) =
∑

y
Pr(Y = y ∧X = x)

Pr(X = x)

but for a continuous random variable, the probability of observing X = x is
often zero, so we cannot define the conditional probability in quite the same way.
The general definition given by (Kolmogorov 1933) is far from intuitive; in fact,
Rényi (1955) derives probability theory starting from conditional probabilities as
primitives.

Ignoring these problems, we can say that for continuous random variables X
and Y , the mean of Y conditional on X = x is given by the analogous weighted
sum

E(Y |X) =
∫
ydF (y|X = x)

where F (y|X = x) is the conditional distribution function (the conditional distri-
bution defines conditional quantiles as above). If the relevant densities exist, we
write

E(Y |X) =
∫
ydF (y|X = x) =

∫
y
f(x, y)

fX(x)
dy

where fX(x) is the marginal density integrating out y i.e. FX(x) = Pr(X ≤ x)
and fX(x) = DxFX(x).
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If we want to calculate a conditional mean for one random variable, the for-
mula is even simpler. We simply integrate over the region given by the event and
divide by the probability of the event we are conditioning on. For example, if we
want to know the mean of a standard normal Z ∼ N(0, 1) when we know that
Z > a, we can calculate

1

1− Φ(a)

∫ ∞
a

Zφ(Z)dZ

where φ(Z) is the standard normal density (f(x) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
is the

normal density with parameters µ and σ, and the standard normal has µ = 0
and σ = 1). Observations on Z given that Z > a have a “truncated normal
distribution” with expectation φ(a)

1−Φ(a)
(so for example, the mean of Z conditional

on Z being greater than 1.96 is 2.3378).
More generally, the conditional distribution of a random variable X given that

X > a and X ≤ b is given by

F (x|a < X ≤ b) =


0 ∀x ≤ a
F (x)−F (a)
F (b)−F (a)

∀a < X ≤ b

1 ∀x > b

and the mean of a function u(X) given that X > a and X ≤ b is given by

E(u(X)|a < X ≤ b) =

∫ b
a u(x)dF (x)

F (b)− F (a)

(the conditional distribution again defines conditional quantiles). If X is normally
distributed with parameters µ and σ, and we know X > a and X ≤ b then the
mean X is

E(X|a < X ≤ b) = µ− σ
φ
(
b−µ
σ

)
− φ

(
a−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)
A.3.3 Variance and Higher Moments
The variance of a random variable x is defined as

Var(x) = E
[
(x− E[x])2

]
= E

[
x2
]
− (E[x])2

and higher central moments are defined similarly: the pth central moment is
µk(x) = E

[
(x− E[x])k

]
and satisfies µk(ax + b) = akµk(x) for constants a
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and b. The variance measures the “spread” around the mean, which is about as
unhelpful a definition as saying it measures the variability around the mean, i.e.
the variance. It helps to picture a few “bell curves” (normal distributions) that
are progressively flatter and wider, but this is very deceptive, as many interesting
distributions are not nice bell curves.

The variance of a binary “dummy” variable has a particularly easy form. If
x = 1 with probability p and x = 0 with probability (1 − p), then its mean is
p and its variance is (1 − p) times p, plus (0 − p) times (1 − p), so Var(x) =
p(1− p). A single draw (sample size 1) of a binary “dummy” variable is called a
Bernoulli trial, and the mean of a sample of n independent draws has the binomial
distribution with mean np and variance np(1− p). This makes hypothesis testing
of a single proportion easy, since a null hypothesis about the mean (the proportion
with x = 1) also pins down the variance.

A.3.4 Asymptotics
Only in the very simplest cases can we make statements about the probability that
some statistic fall in some range for a dataset of the type we are working with; for
example, if we have a sample of n observations on a normally distributed random
variable with an unknown mean and variance, we can make precise statements
about the probability the sample mean would fall outside a range given a null hy-
pothesis about the true mean. More generally, we use an asymptotic result for
“large samples” by taking the limiting behavior as the sample size n increases
without bound (approaches infinity) as a reasonable approximation of the distri-
bution of our statistic for samples of size n when n is large. There are a variety
of types of asymptotic results, notably convergence in probability and almost sure
convergence.

The probability limit (plim) of a sequence of estimators θ̂n with sample size n
increasing without bound is θ if

lim
n→∞

Pr
(∣∣∣θ̂n − θ∣∣∣ ≥ ε

)
= 0

for any ε > 0. Or, in other words, for any e > 0 and any d > 0, there exists a
value ν such that Pr

(∣∣∣θ̂n − θ∣∣∣ > e
)
< d for all n ≥ ν. In that case, we write

plim θ̂n = θ

and say that θ̂n is a consistent estimator of θ. We can also say that θ̂n converges in
probability to θ, or write

θ̂n −→p θ
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to mean the same thing.
Given a sequence of constants an if we can show that

θ̂n
an
−→p 0

then we say that θ̂n is of order less than an or that θ̂n = op(an) (borrowing the
“little oh” notation from calculus, but subscripting by p to mean “order in proba-
bility”). When we can prove the convergence of an estimator divided by the square
root of the sample size n, we say we have a root-n consistent estimator, or

√
n-

consistent estimator. For example, if we have an estimator β̂n which converges to
β at the rate

√
n, we can write θ̂n =

√
n(β̂n − β) and

θ̂n = op(n
− 1

2 )

i.e. even multiplied by the square root of the sample size, which is going to in-
finity, the difference between the estimator and its limit goes to zero, which im-
plies that the series converges very quickly. Evidently, a n

1
3 ) consistent estimator

would converge more slowly and a n
2
3 ) consistent estimator would converge more

quickly.
The Weak Law Of Large Numbers is a famous application of convergence in

probability for the most common estimator, the sample mean x̄n = n−1∑n
i=1 xi

of a sample of n observations on a random variable X that are identically and
independently distributed. If we let µ be the population mean ofX , then x̄n −→p µ.

A related concept is convergence in distribution. Suppose that

Fn(v) = Pr(θ̂n ≤ v)

is the distribution function for our estimator in a sequence of increasing sample
sizes, and F (u) is a distribution function for some random variable θ. We say that
θ̂n converges in distribution to θ if

lim
n→∞

Fn(a) = F (a)

for any real number a where F (v) is continuous, and we write Fn(x) −→
d
F (x).

Convergence in probability implies convergence in distribution.
If we let µ be the mean of x, and σ its variance, then for the sample mean

x̄ = n−1∑n
i=1 xi the Central Limit Theorem states:

√
n
(
θ̂n
)

=
√
n
[
x̄− µ
σ

]
−→

d
N(0, 1)
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The nice feature of convergence in probability is that it passes through contin-
uous functions, so if xn −→p x and the function g(x) is continuous, then g(xn) −→p
g(x) or:

plim g
(
θ̂n
)

= g
(
plim θ̂n

)
whereas the expectation operator can only be passed though linear functions.

The delta method for calculating standard errors of a function of random vari-
ables uses a related result. If

√
n
(
θ̂n − θ0

)
−→

d
N(0,Σ) then

√
n
(
g(θ̂n)− g(θ0)

)
−→

d
N(0,∆)

where

∆ =

[
∂g

∂θ
(θ0)

]
Σ

[
∂g

∂θ
(θ0)

]′
Asymptotic equivalence is a way of establishing convergence in distribution.

If there is a sequence bn such that
(
θ̂n − bn

)
−→p 0 and

(
θ̂n − bn

)
−→

d
b for some

random variable b, then θ̂n) −→
d

b and we say that θ̂n and bn are asymptotically
equivalent (Rao 1973; page 123).

Mean square convergence is a useful trick to prove other kinds of convergence.
A sequence of estimators θ̂n converges in mean square to a random variable θ if

lim
n→∞

E
[(
θ̂n − θ

)2
]

= 0

and mean square convergence implies convergence in probability, provided the
variance of θ̂n exists (called a “finite second moment” condition).

Almost sure convergence is a much stronger condition; as White (1984; page
16) says, “sequences that converge almost surely can be manipulated in almost
exactly the same ways as nonrandom sequences.” A sequence of estimators θ̂n
converges almost surely to a vector θ if

Pr
(

lim
n→∞

θ̂n = θ
)

= 1

so the estimator converges almost everywhere on the space of possible realizations
of the state of the world (the set of convergent sequences is dense on the space of
possible sequences). In this case, we say that θ̂n is strongly consistent for θ and
we write

θ̂n −→a.s. θ
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(for example, the Strong Law Of Large Numbers says that x̄ −→a.s. µ). Almost
sure convergence implies convergence in probability, which in turn implies con-
vergence in distribution, but almost sure convergence does not imply convergence
in mean square (nor does convergence in mean square imply almost sure conver-
gence).
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Appendix B

Data and Stata

In the real world, we always have finite data, and the computer program we use to
construct estimates can have real consequences for the quality of our estimates. I
assert without proof that Stata is the best choice.

B.1 Stata Basics

If you’re used to some alternative software for statistics, my condolences—you
have been missing out. There are some important differences to note up front.
Stata commands are almost always on a single line, perhaps with options after a
comma, and can be issued interactively at a command line or in a file of com-
mands. A “program” or list of commands in some other software is a Stata do
file (just a plain text file with the .do extension by default). A SAS “macro” is
a Stata program, more or less. Also, the data structure is a bit different, and
handling data is very different, primarily because Stata has all the data in mem-
ory at one time, whereas some other programs handle one line of data at a time.
The main difference between SAS and Stata is that you can see inside much of
Stata’s code and get good help very easily (both from the company and from
other users). Also, Stata is not an acronym, so it is not spelled in all caps. For a
couple of useful introductions to Stata, see http://www.ats.ucla.edu/STAT/stata/ or
http://www.cpc.unc.edu/services/computer/presentations/statatutorial or various other
university help sites.

145



146 APPENDIX B. DATA AND STATA

B.1.1 Getting Started

Stata is an extremely flexible program for working with data, and the tradeoff for
that flexibility is that it is not the simplest program in the world to use, but it is
easier than most. There are few other programs that have comparable strengths:
SAS is slightly less flexible, and R is slightly more flexible than Stata, but both
of these are much harder to use for beginners, and there are easier programs for
beginners to use, but are not useful for doing statistical or data manipulation work
past a certain point.

As an example, consider running a basic OLS regression in Stata: you just type
regress y x in the Command window1 to regress y on x and get a variety of
related statistics. It’s not that easy in any other program. To get my favorite user-
written addition, just type ssc install estout, and you’ve just added the
capability to create formatted tables of regression output (using esttab, with the
rtf option for a table that opens in Microsoft Word—if you are using LATEX, I’m
guessing you can navigate the help yourself).

Assume you’ve just started Stata. There are four windows open, the big Re-
sults window, and below it the small Command window where you type com-
mands. On the left are the Review window, showing commands you’ve already
run, and the Variables window, showing variables in the data you are using, both
empty right now, of course. You can try moving around the windows, and chang-
ing their size. You can right-click on the Results window to choose another font
or color scheme. If it ever happens that you accidentally move a window to where
you can’t see it anymore, you can restore the factory defaults like so: in Stata
9 and earlier, click on Preferences, and choose Manage Preferences, and Load
Preferences and click on Factory Settings; in Stata 10, click on Edit, choose Pref-
erences, choose Manage Preferences, and Load Preferences and click on Factory
Settings. In Stata 11, click on Edit, choose Preferences, choose Load Preference
Set, and click on Factory Settings. If you have a Stata version prior to Stata 11,
I recommend you go to General Preferences (Windowing tab) and check “Lock
splitters,” and uncheck “Enable ability to dock, undock, pin or tab windows” so
you don’t accidentally move a window to where you can’t see it anymore.

1You could also use menus and dialog boxes, but I don’t, and I advise others not to—it is
simply easier in the long run to learn to type your commands in the first place.
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B.1.2 Updating and Getting Help

The command to get free updates is update and you can check if your Stata is
up to date with update query. You shouldn’t ever have to update if you’re
using Stata on a network and your network administrator is up to snuff, but if you
update on your home computer, make sure you do that last step of updating the
executable. If Stata starts producing weird behavior, it is almost certainly because
you did a partial update. Type query and just notice how many options you can
set with the set command (we’ll discuss some below). Now type about. This
is the kind of info you will want to include if you ever send an email asking for
help from Stata’s Tech Support, and if you do not have the most up-to-date version
you should include the version number in any email asking for help (from Stata
or from other users).

Speaking of help, most of your questions can be answered by typing help
or findit. Suppose you want to find a command for instrumental variables
estimators—try typing findit instrumental and scroll down to see some
of the relevant commands, both official and user-supplied, and FAQ files. You
could also be more specific: findit instrumental first-stage (the
user-written program ivreg2 which shows up in the output is one of my favorite
programs).

If help and findit don’t give you an answer, Google often will (often from the
archives of stata.com or the Statalist; for example if you try to install Stata 10 on
a Windows 2000 machine, it may complain that you don’t have gdiplus.dll but a
quick Google search turns up http://www.stata.com/support/faqs/win/gdiplus.html
with a fix). I often use Google with the site:stata.com qualifier that restricts the
search to stata.com (including their archives of the Statalist). There is also a large
collection of FAQ’s at Stata’s website (http://www.stata.com/support/faqs).

As a last resort, you can subscribe to the Statalist (http://www.stata.com/statalist/)
and ask the experts, but be sure to read the Statalist FAQ first
(http://www.stata.com/support/faqs/res/statalist.html), and spend some time fram-
ing your question concisely and clearly to maximize your chances of a good
answer. I would recommend reading some posts and replies before you send
your own post to the list. Make sure you specify your problem clearly, avoiding
discipline-specific jargon and provide a short but informative summary, prefer-
ably with an example using the publicly available datasets described at help
dta contents. I say “as a last resort” only because 8 out of 10 questions
posted on Statalist can be answered by looking at a help file, and another 1 out of
10 by searching the Statalist archive.
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B.1.3 Syntax

For an example of figuring out the syntax for a command, install one of my fa-
vorite user-written commands with ssc install ivreg2, replace, then
open the help file (help ivreg2); this is a really well-written help file. Like
the basic regress command, the ivreg2 command operates on a list of vari-
ables (click on varlist in the basic syntax line for help on how to specify a
variable list). You can also specify weights; weights are always optional, but not
every command allows weights. You can also specify restrictions with if or in,
which we will come back to below. Then you can specify a variety of options af-
ter the comma (the open square bracket and comma indicates that all the options
are optional, which is not so surprising, I guess).

Some of the options, e..g. cueoptions() and robust have parts of the word
underlined. The underlined part is a minimal abbreviation of the option, i.e. you
can just type those letters and the meaning is the same as if you had typed the
whole thing. Abbreviating variable names can be dangerous, but there is no reason
to type the command or option name out—anyone who reads the code will know
what you mean, and if they forget what command a particular abbreviation stands
for, it’s easy to find out.

Try typing help su. Note the minimal abbreviation on the whole command.
Now try help sum. Stata tries to help you as much as it can here: do you mean
the summarize command or the sum() function? If you see sum in the spot of a
command, you know it is the summarize command; if you see sum followed by
parentheses, it the function.

The command varlist [weights] [if] [in] [, options] layout is one of the two
most common basic syntax diagramsthe other has a =exp part which we will see
when we come to generating variables. The if qualifier restricts any command
to operate only on observations where the statement is true, and the in qualifier
restricts any command to the set of observation numbers specified in a list of
numbers (see help numlist). Weights are covered below.

B.1.4 Stata Files

Mostly, you need to know about 5 kinds of files to use Stata: do files (with the
.do extension), log files (usually with the .log or .smcl extension), .dta files, .dct
files, and .ado files. There are help files, too, with the .hlp extension up through
Stata 9.2 and .sthlp for Stata 10 and up (the main reason for the new extension is
ongoing problems with Windows trying to open .hlp files as if they were Microsoft
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Help Format files, after Microsoft improperly appropriated the extension). Only
occasionally will you run into .mo or .mlib files (see help m1 first), or .exe or .dll
files (see help plugins). In short, a do file is a list of commands, a log file is a
compendium of raw output, a .dta file is a Stata dataset, a .dct file is a dictionary
(see help infile) that specifies how some raw file can be turned into a Stata dataset,
and an ado file is an “automatic do-file” that loads a program (see Programming
below).

B.1.5 Recordkeeping: do files and log files
Everything in this chapter you can do interactively, which means type stuff in one
line at a time (or even [heaven forfend] use a dialog box), but the right way to do
things is in a do-file. This is a text file of commands, all of which are executed
one after another, and provide a good way of making sure you can reproduce
your results, which is a basic requirement for good research. Once you’ve typed
commands in a do-file called “p.do” you can run the do-file with the command
“do p” and see everything run. You can open a do-file using the Window...Do-file
editor...New file command or type doedit or just hit Ctrl-8.

Write set mem 100m and save the file as /ado/profile.do (create the /ado folder
if necessary). Then go back to the command window and type “cd /ado” (makes
/ado the current directory) and do profile (runs the do-file profile.do). The set
mem command increases the amount of memory available to Stata, which makes
it a bit easier to open a dataset. Also see help profile.

B.1.6 File environment commands
Of course, you need to work with other files, too, so these types of commands
may prove handy:

cd "c:\Program Files"
change directory to c:\Program Files

pwd
shows your current directory (path)

erase /ado/auto*
erase the files in \ado whose names start with ‘‘auto"

copy x y
copy file at location x (could be a URL or a path)

to location y (on a local drive)
!del auto*

The ! or shell command runs a program
in the operating system (like del)

winexec "\IEXPLORE.EXE" http://google.com
Also runs a program in the operating system,
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but doesn’t wait for it to finish before
Stata goes on to the next thing.

type profile.do
Displays the contents of the text file

"profile.do" in the Results window.

You can use a text editor such as Textpad or Stata’s built-in editor (though
Stata’s built in editor only allows about 32KB of commands per file, that is really
not a binding constraint, since one do file can call another, e.g. myfile1.do can end
with the line do myfile2.do) but don’t ever use Word or another non-text editor to
make your do-files, since it becomes too easy to introduce non-text gibberish. See
http://fmwww.bc.edu/repec/bocode/t/textEditors.html for more info on text editor
choices and configurations. I use WinEdt myself, which is also handy for writing
TEXfiles (how this book was typeset).

You should really start every do-file out by first stating what version of Stata
you’re using with e.g. version 9.2 (this ensures the do file will run the same way
in a subsequent version, and won’t accidentally run incorrectly in a prior version)
and then making a log file, or a record of everything run, with a command like log
using myfile1, text replace and put the about command right after it so you can see
what version of Stata you ran in. It helps to use the command capture log close
(right before opening a log with log using) to close any open log file (the capture
command suppresses any error message that results from no log file being open).

Another handy command, especially for when you first start up Stata, is cmd-
log, which opens a log file that just saves just the commands you type, not their
output. If you like to just type willy-nilly and see what happens, then write the
real do-file later, the cmdlog command can help you make your do-file easily. Just
type whatever you want, then edit out the dross after the fact. (I open a cmdlog
at the beginning of every session using profile.do, just in case I need to look up
something I typed later).

Comments are a necessity in do-files and log files, so you will want to know
that you can put anything you want between /* and */ and the contents will be
ignored. Any line that starts with * will be ignored, and the rest of any line after
/// will be ignored, too. So if you want to put a long command on more than one
line you can
set mem /*
*/ 100m

and Stata will read it all as one line or
set mem ///
100m
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with the same result. You can change the end-of-line delimiter to a semi-colon or
back to a carriage return with the #delimit command on a line all by itself.

Useful commands for controlling the flow of output to the Results window
include set more on, more, and set more off. If a command produces more output
than can be shown in the Results window on the screen size you’re using, the
command will pause until you hit a key. Sometimes you would prefer that Stata
keep going through all the commands, rather than waiting for you. The set more
off command at the start of a do file will ensure that Stata doesn’t wait for you
to hit a key. Other times, you’d like Stata to pause until you’ve had a chance
to review output (after changing the data, as with a merge, for example), and
the commands set more on, more, and set more off in that order will make Stata
pause. The quietly command can preface any other command, and hide its output,
which is often handy. You can also enclose a block of commands inside qui {
and } to suppress the output of each command in the block. Inside the block, you
can preface a command with noi to show output for that command. If you want
to see under Stata’s hood, and have Stata show everything that a command does
(including programs that it calls, and programs that the programs call), you can
set trace on. If you set traced 1, you will see only what the command does, and
if you set traced 2, you will see only what the command and any programs it call
do. These commands are especially useful when debugging programs and loops
(q.v.). To turn off this verbose output, just set trace off.

B.2 Data
After you’ve got Stata up and running, and you’ve got some kind of record of your
work in place, you need to get some data. A lot of the time, you will be given
data in Stata format, which you can load with the use command. Sometimes you
will be converting data from another format using StatTransfer or DBMSCopy, or
importing text files using infile or related commands. The infiling situations are
often idiosyncratic, and covered by help infiling, so I will just touch on two things
that may be helpful: insheet and dictionary files (see help infiling for more) . The
command insheet will import tab-delimited or comma-delimited files in one step,
and if the first line is a bunch of variable names, it’s pretty automatic, but you
might wind up with text or string variables where you wanted numericsee help
destring for a quick fix (also helpful are encode and decode, which turn string
variables into numeric variables and vice versa). More complicated situations
usually require two files. One is a dictionary file with format information, and
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the other a do-file that uses the dictionary to import data via an infile using X
command, and then does all the data manipulation you need.

As an example of some really complicated infiling problems and how to easily
address them, you can check out the examples in the help file for ddf2dct on
SSC, for reading CPS or SIPP data stored in raw text files, then assigning labels
(see help label), and (for the CPS) turning household and family records into
household and family variables attached to individuals.

We’ll skip over this, and use some data that comes with Stata. The sysuse
command loads a dataset that Stata finds on its search path, so if you type sysuse
auto, you will load a commonly used dataset. You can see the variables show
up in the variables window. These little toy datasets are good to know about (as
are the datasets available via webuse; see help dta contents), because if
you ever have a problem that you want to get help with, you should recast it as a
problem on one of the little toy datasets that ship with Stata. Most of the people
who might answer your question will stop paying attention if you spend the first
paragraph describing the variables on the NSAF or SASS, or whatever massive
esoteric dataset you’re using that no one else cares about.

Try out another set command, to see what kinds of things you can do to your
environment:

set varlabelpos 8
set varlabelpos 30

Did you see what happened in your variables window? This is especially
handy when someone else has made your data, and named the variables using
some really long names like
mydatacamewithniceshortnamesbutImadethesevariablesimpossibletouse. Variable
names should be short, and labels short be as short as they can be and still be
meaningful. Details can go in notes on variables.

The clear command gets rid of the data in memory, and is therefore a very
dangerous command—until you save your data to disk, it is all held in memory,
and if your computer shuts down unexpectedly or your clear when you didn’t
mean to, you will lose your changes. No different than most computer programs,
but worth emphasizing more than once.

The save command is crucial, and often dangerous. Stata will not let you save
over an existing dataset, unless you specify the replace option—but this is very
dangerous. It is all too easy to change your data in some irrevocable way and then
overwrite your good data with bad data. It’s good practice to start every do file by
using or infiling data, and do stuff to the data, and save a different dataset under
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a new name at the end of the do-file. Note you can also screw up the replicability
goal by saving multiple different versions of your data under the same name in
different directories. If you type save auto and save auto.dta in the /ado folder,
you have two copies, so you could make corrections to one, then open the other,
and get incorrect results in such a way that the source of the error would be very
hard to track down.

Some of these problems can be avoided with naming conventions (see Figure
B.1). One way is to have a do-file which saves the data at the end with the same
name as the do-file, where you never overwrite the original dataset (any correc-
tions to the data are made in the do-file). So you might have raw data in cps.txt
read in by cps05dropouts1.do which saves an analysis file cps05dropouts1.dta,
then cps05dropouts2.do makes some new variables and runs some tabs and saves
cps05dropouts2.dta, and then cps05dropouts3.do drops a bunch of data to make
an estimation sample and saves cps05dropouts3.dta.

Figure B.1: Simple naming conventions can save you a lot of headache
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B.2.1 Annotating the Data
The label and note commands are invaluable. You should always label every vari-
able, describing what it measures, or when you open the data again in 5 years, or
someone else does, no one will have any idea.

la var rep78 "Repair Record, 1978"

You should also label the values of any categorical variable.

la def replab 1 "Good"
la def replab 5 "Bad", modify
la val rep78 replab

You can also add notes on any variable like so:

notes rep78: not sure if 1 is good or bad

and add notes to the whole dataset:
note: rep78 badly labeled

and list the notes by typing notes.

B.2.2 Seeing the Data
You can type list to list your data in the Results window, and I use this command
with various options often, to see what I’ve done to the data. But try typing browse
to take a look at the auto data in spreadsheet form. As you can see, the data is a
big matrix with variables as columns and observations as rows. Suppose we know
that the AMC Pacer really has 10 cu ft of trunk space. Click on the 11 under
trunk on the AMC Pacer line and type 10, enter. Nothing happens (this is the
beauty of browse) so you cannot accidentally screw up your data. Now type edit
and do the same thing, and you’ve changed the value. Close the window; now
Stata asks you if all the changes you made were intentional, and then records the
commands that produce those changes on the results screen (and your log file, if
you’ve got one open, but nothing to your cmdlog file, since you didn’t actually
type the commands). But you have now changed only the data in the computer’s
memory, not the data on the hard drive. If you type sysuse auto, you will be told
NO, but type sysuse auto, clear to force Stata to lose the data it has in its head at
the moment, and brow to see that the value on the hard disk copy of the data is
unchanged.
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You can also see subsets of the data by typing edit varlist, e.g. edit make trunk
or edit if some condition, e.g. edit if trunk==11 (note two equal signs), or in some
obs numbers e.g. edit in 1/3. The list command will show the same info as browse
in the Results window (and therefore in the log file).

Note that the if qualifier restricts any command to operate where the statement
is true, and the in qualifier restricts any command to the set of observation numbers
specified in a list of numbers (see help numlist). There are two uses of the word if
in Stata—the second is described below, but see help if and help ifcmd for details.

In Stata 11, there are a variety of fun new features in the data editor, and you
can record changes made to the data in the data editor, but it is still a bad idea to
do a lot of work there—only code in a do file is truly reproducible.

B.2.3 Descriptive Statistics
To get an overview of your data, the describe, codebook, inspect, and summarize
commands are quite handy. Type su (short for summarize) to get summary stats
on all the vars, or su trunk for just one. You can get more detail with options,
e.g. su trunk, d. Probably su is the one command I use the most. Another most-
commonly-used command is tabulate, abbreviated tab, which produces simple
tabs, e.g. tab trunk (from which we see that the median is 14), and crosstabs, e.g.
tab trunk for. Cousins table and tabstat can produce more complicated tables of
summary statistics.

B.2.4 Making new data
Most of the time, you have to make the variables before you make a tab. The
generate command (abbreviated gen or g) makes a new variable, and the replace
command replaces values in an existing variable. You type gen (or g) or replace,
then a variable name, then a single equal sign and an expression or function (see
help functions, help exp, help operators, help subscripting, and help variables):

gen met=tru* (12*.0254)ˆ3
su met tru
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
met | 74 .3891653 .121417 .1415842 .6512875
trunk | 74 13.74324 4.2878 5 23

Now let’s make a dummy variable indicating trunk size at the median:

gen met=(trunk==14)
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Whoops. We already have that variable. Let’s say we don’t care about the old
met var and drop it:

drop met
gen met=(trunk==14)

But the other thing we could do is just replace it like so:

replace met=(trunk==14)

Note that the single equal sign means “assign” in a command like gen y=x but
the double equal sign means a test of equality as in gen y=x if z==1.

B.2.5 Logical Statements and Missing Values
What is that replace met=(trunk==14) expression doing? It’s a logical statement,
i.e. it is true or false that trunk==14, so the statement (trunk==14) evaluates to
one (true) or zero (false). So it is doing the same thing as:

gen met2=1 if trunk==14
replace met2=0 if trunk!=14

which first makes met2 equal one whenever trunk equals 14, with a missing value
shown as a single period everywhere else, then puts zero whenever trunk doesn’t
equal 14 see help operator for more operators. Note that != means “not equal to”
(and see NOT below). You could also

gen met3=1 if trunk==14
replace met3=0 if mi(met)

which first makes met2 equal one whenever trunk equals 14, then puts zero when-
ever the new variable is missing (undefined), and seems like the same thing as

gen met4=1 if trunk==14
replace met4=0 if trunk<14 | trunk>14 & trunk<=23
su met*

where the | symbol means “or” and the & symbol means “and” but that’s not quite
true—why? Try the following:

tab rep78
gen medr=(rep 78==3)
gen medr2=1 if rep 78==3
gen medr2=0 if rep78==1 | rep78==2 | rep78==4 | rep78==5
su medr*
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The problem is, “missing” is a value too. There are actually a variety of miss-
ing values (see help missing), which are helpful if you want to code the reason
something is missing (e.g. .a means “Refused interview” and .b means “Not at
home”), and they are all bigger than any real number (i.e. they also represent
infinity). So gen hir=(rep 78¿=3) will include all missing rep78 values in the hir
“High Rep” category. The better way to code the creation of the hirep dummy
variable is
gen hirep=(rep78>=3) if !mi(rep78)

which will put a missing value in every obs where rep78 is missing, though you
could also
gen hirep=(rep78>=3) if rep78<.

because the missing value . is bigger than any real number, and extended missing
values are bigger than the missing value . (and .a is smaller than .z).

You should always account for any potential missing values when you write a
generate or replace statement; failure to do so may result in incorrect calculations.
This goes for any statistical software, of course. You cannot simply put values in
for some missing values (which is what failing to account for missings will do) as
that will bias your results; see section 1.5.4 for ways to fill in missing values.

On NOT: the NOT EQUAL operator says A does not equal B, e.g. trunk!=14
means trunk is not 14 for a given observation and evaluates to one or zero. The
NOT operator gives the opposite of a true-or-false statement, so !(trunk==14)
means the same as (trunk!=14), which can be a handy trick for much more com-
plicated expressions.

B.2.6 System variables
What if you wanted not just the median value but the middle observation (or the
first of two middle observations)? Then you would need to reference the observa-
tion number directly, or you could

gen med=1 in 37
replace med=0 if mi(med)

but it’s much more direct to use a built-in variable which is equal to the current
observation number and is always available on every dataset: n

gen med2=(_n==37)
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But what if you didn’t know how many observations you had in your dataset,
and you didn’t want to have to figure it out interactively before you wrote your
do-file? Then you just use N, which is a built-in variable containing the number
of the last observation:
gen med3=(_n==_N/2)
su med*

What if you want instead to change the value of some variable in that middle
observation, e.g. change medr2 to 2 in that observation? It’s just replace medr2=2
in N/2 right? No, you can’t put calculations after the “in” qualifier. But you can
use a trick to force calculations in these kinds of spots that nominally don’t allow
expressions, but only numbers: put the expression inside a left single quote, equal
sign and a right single quote.
replace medr2=2 in ‘=_N/2’

and Stata will calculate the thing inside ‘= and ’ before running the command. In
this case, you could also
replace medr2=2 if _n=_N/2

but the trick is handy when you have no alternative.

B.2.7 Subscripting and tsvarlist
Often, you want to refer to other observations when making a variable, e.g. the
value before or after the current one. This is when you want to use explicit sub-
scripting (see help subscripting) such as
gen med2lag=med2[_n-1]
edit med2 med2lag

You can even put a variable name in the brackets indicating which observation
you want to reference:
gen med2lag=med2[wave]

This set of tricks for looking at neighboring observations is one of the minor
advantages of keeping all the data in memory (as opposed to reading it in a line at
a time as SAS does), but the cost is that you have to have enough memory to keep
all the data in memory. There is a whole suite of functions (see help tsvarlist) for
making lags and leads and differences without subscripting, which is safer, since
a one-period lag is not always the prior observation (if years were 1989, 1990,
1992, 1993, the lag should only be defined in the second and fourth observations).
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B.2.8 Functions
When I wrote

gen medr2=0 if rep78==1 | rep78==2 | rep78==4 | rep78==5

above, I really should have used a handy function:

gen medr2=0 if inlist(rep78,1,2,4,5)

and of course there is a long list of handy functions at help functions orga-
nized into categories: Mathematical functions, Probability distributions and den-
sity functions, Random-number functions, String functions, Programming func-
tions, Date functions, Time-series functions, and Matrix functions.

Note the distinction between functions and commands; commands occupy the
first slot in anything you type in the Command window, whereas functions appear
on the “right hand side” of some command, for example display exp(lnfactorial(10))
which shows the factorial of 10 on the screen. In that command, the command
display is used in its useful capacity as a hand calculator, and there are two
functions exp() and lnfactorial() used to calculate the scalar shown. Most
functions are shown together with parentheses to emphasize they are functions,
not commands, which means you can’t type help exp to get help for that func-
tion (try it).

B.2.9 By groups
A lot of tricks in generating variables are used so much, they are coded in the
“extensions to generate” command egen and you can learn a lot just by reading
help egen. Even more are included in user-written egenmore (on SSC). But
you should know that none of these tricks are that complicated to write using the
basic generate and replace, possibly with a by command or loop thrown in
(loops are covered below in B.5.1). The by command steps through each unique
value of a variable, and treats each set of observations as a little separate dataset.
The data must be sorted by values of the by-group variable before using the by
command (see help sort).

Suppose we wanted to calculate the minimum value of rep78 for foreign and
domestic cars—we could:

sort for rep78
by for: gen minrep=rep78[1]
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since the first line orders all the cars by repair record within for==0 or for==1
(Foreign) and the second line looks only within each group, and assigns the value
of rep78 in the first observation to the new variable minrep. Note that the n vari-
able which records the current observation number resets within each by-group,
i.e. each group is treated like its own little dataset. You can combine these two
steps with the bysort command (abbreviated bys):
bys for (rep78): gen minrep=rep78[1]

where the variables after bys but before the parentheses are the variables you want
to perform the command by, and the variables inside the parentheses specify the
sort order of each little dataset you are performing the command on. For more,
see: http://www.stata.com/support/faqs/data/group.html and many other related
FAQs on data management, or the Data Management manual.

One common class of problems is to calculate a mean or total over all members
of a group, for example all workers in each city given data covering a nation,
or to calculate for each observation i a mean over all individuals in the group
that are not i (i.e. not including that observation) For example, we might want
the unemployment rate for all other workers, which is a mean of a dummy for
unemployed over “not i” cases.

Often egen provides an easy solution (at least to part of the problem) in one
line of code, though it is never faster than using generate and by and other
built-in commands. egen is in fact a whole collection of functions, some of
which are specifically tailored to these kinds of problems. For example, egen,
total() by() produces totals, including counts, separately for groups defined
by one or more variables specified as arguments to the by() options. Note that
total() in Stata 9 and later is a replacement for sum() in Stata 8, which was
deemed confusing given the definition of the sum() function for generate and
replace as a running sum.

One simple method of calculating a “not i” total using egen is to calculate
a total for each group, then subtract each member’s contribution from that total
(noting that the contribution will be zero if the value is zero). If a mean is desired,
we can also calculate the “not i” number of nonmissing values, as the total number
of nonmissing values within each group less an indicator for whether i is missing,
and divide the total by that observation count. A weighted average simply multi-
plies the variable by weights before calculating a total, then divides by the sum of
weights.

As the help file for egen shows, total() takes an expression as an argu-
ment, not just a single variable. If we want to measure the number unemployed
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for other adults in the same city, where unemployment is defined by a variable
work being zero and a variable lf being one, we can just
egen n=total(work==0&lf==1&age>=18), by(city) to get the to-
tal, then replace n=n-(work==0&lf==1&age>=18) to subtract the con-
tribution of observation i. To get the unemployment rate, we would just divide
the number unemployed by the number of nonmissing observations employed to
calculate the total.

This approach depends on two properties of sums. First, the sum for “every-
body else” is just the sum for “everybody” minus the sum (the single value) for
the current observation. Second, the value of a sum is not affected by adding or
subtracting 0. If we want other statistics, we cannot count on these properties in
general; we need a more general approach using a loop (see B.5.1 below and the
FAQ “How do I create variables summarizing for each individual properties of the
other members of a group?” at
http://www.stata.com/support/faqs/data/members.html).

A useful trick that can save a lot of time and avoids such loops applies in a
specific case where each observation is related to another via a line number or
the like. For example, consider a family survey in which we do not have direct
information about attributes of other family members attached to each person, but
we know family relationships. Suppose we have variables for family id (family)
and individual id (person) and also for father id (fatherm) and mother id
(motherm) (which are missing if a person’s mother or father is not a member of
the same family), and we want to calculate the age of each person’s mother. The
example data can be entered like so:

input family person fatherm motherm age
1 1 . . 36
1 2 . . 37
1 3 1 2 14
1 4 1 2 5
1 5 1 2 2
2 1 . . 54
2 2 . 1 32
2 3 . 2 10

end

So family 1 includes a couple and three children, all of whom are children of
the same mother and father, while family 2 includes a grandmother, her daughter
and a grandchild, the son or daughter of that daughter.

In this example data, the individual id (person) corresponds to the observa-
tion number n within each family (remembering that under by varlist:, n
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is interpreted within each group of observations, not for the whole dataset) so, im-
portantly, no person numbers are skipped within family (note that this often will
not be true in survey data). In this specific case, we can calculate the attribute of
another family member whose individual id is coded in another variable by sub-
scripting (see also help subscripting in Stata) using the other variable. To
calculate mother’s age, we just:

bys family (person): g m_age=age[motherm]

Before using the previous command, we should always check our assumption
that the individual id person corresponds to the observation number n within
each family with an assert command:

bys family (person): assert person == _n

In the event that the individual id person does not always correspond to the
observation number n within each family, or person numbers are skipped within
family, we can use the fillin command to ensure every person number exists,
possibly with all missing data aside from identifiers. Let’s create a problem in our
data where one number is skipped in a family:

input family person fatherm motherm age
1 1 . . 36
1 3 . . 37
1 4 1 3 14
1 5 1 3 5
1 6 1 3 2
2 1 . . 54
2 2 . 1 32
2 3 . 2 10

end

Now if we fail to check the assumption, or ignore the result of the assert
command, we will get the mother’s age in family 1 as 14, since the mother (person
number 3) is the second observation and the third observation has age equal to
14. In this example, we can just

fillin family person
bys family (person): assert person == _n
bys family (person): g m_age=age[motherm]
drop if _fillin==1
drop _fillin
li, noo sepby(fam)
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But this will not always be true. Let’s create a bigger problem in our data,
where the same number is absent in every family:

input family person fatherm motherm age
1 1 . . 36
1 3 . . 37
1 4 1 3 14
1 5 1 3 5
1 6 1 3 2
2 1 . . 54
2 3 . 1 32
2 4 . 3 10

end

In this case fillin has no way of knowing that we intend it to add an extra
observation with all missing data, but person equal to 2, in each family. One
solution is to recode every id; another that works well here is to create a fake
family with all missing data and every person number from 1 to the highest
number observed in the real families, preferably using an id number we know so
we can drop it when we’re done:

set obs ‘=_N+1’
su family, meanonly
local fake=r(max)+1
replace family=‘fake’ in l
su person, meanonly
expand ‘r(max)’ in l
bys family (person): replace person = _n if family==‘fake’
fillin family person
bys family (person): assert person == _n
bys family (person): g m_age=age[motherm]
drop if family==‘fake’
drop if _fillin==1
drop _fillin
li, noo sepby(fam)

The fillin command may add many observations to the data, perhaps mak-
ing the above code unbearably slow, or even making the data too large for your
machine. There are at least two ways around this:

1. use only part of the data at any given time, preferably parts with simi-
lar maximum person numbers to minimize computation time, and do the
fillin and calculations on each part before appending parts back to-
gether, or

2. rename identifiers and variables, save temporary files, and use merge
to put the data back together.
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The second approach is described in the the FAQ “How do I create variables
summarizing for each individual properties of the other members of a group?”
(at http://www.stata.com/support/faqs/data/members.html) and in various other
places.

B.2.10 Data manipulation
To destroy the data in memory, and simultaneously turn it into useful summary
statistics, and quickly, the collapse command is invaluable. Of course, you
may want to save a copy of your data to disk before you destroy the copy in
memory–if you want to save a temporary copy, you can use preserve, then
type restore when you want it back. If you wanted to calculate the weighted
mean of income at the family level using a sampling weight finwt, you could
preserve, then collapse income [pw=finwt], by(familyid) and
save fminc to save the calculated means and then restore to get the full
dataset back, and merge the mean income back onto the main data.2

The merge command matches two datasets, one in memory and on the hard
drive, usually using an identifier, such as family or person IDs. It is a relatively
straightforward command, with a good help file, but for some reason, people al-
ways seems to get something wrong in merging. So be careful about checking the
diagnostics that the command supplies, and always look at a few observations to
make sure it went like you thought it would. Stata 11 updates the syntax to try
to cut down the number of mistakes people make with merge, but the old syntax
still works, with a warning.

The append command just adds data to the end of the existing data (like
stacking one matrix on top of another). If you had foreign auto data in for.dta
and domestic in dom.dta, you could use for, then append using dom, then save
auto. It’s important to remember that if variables are named differently, they will
not be missing in half the data (well, not half, but you get the idea). If variables
that are named the same have different value labels (corresponding to different
coding), the appended data will lose its coding and use the master data’s coding.
For example, if gender is 1 for male in one year and 2 for female, and you have
defined value labels that reflect that in your data, and then you append the next
year’s data where 0 is female and 1 is male, you will see:

tab gender
gender | Freq. Percent Cum.

2Try ssc describe gwtmean for a faster alternative.
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------------+-----------------------------------
0 | 390,003 25.03 25.03
Male | 612,066 39.28 64.31
Female | 556,212 35.69 100.00
------------+-----------------------------------
Total | 1,558,281 100.00

The reshape command changes the shape of the data in very useful ways. If
you have panel data on earnings, but each year of data are saved as variables, such
as e1951, e1952, etc. then you will want to reshape the data to have observations
as person-year data points (so you can run panel regressions):

li persid e19??, noo
+--------------------------------+
| persid e1951 e1952 e1953 |
|--------------------------------|
| 1 1800 1800 1900 |
| 2 2600 3100 3200 |
| 3 3000 3800 5500 |
+--------------------------------+
reshape long e, i(persid) j(year)
Data wide -\> long
-----------------------------------------------------------------------
Number of obs. 3 -\> 9
Number of variables 4 -\> 3
j variable (3 values) -\> year
xij variables: e1951 e1952 e1953 -\> e
-----------------------------------------------------------------------
li persid e*, noo sepby(persid)
+---------------+
| persid e |
|---------------|
| 1 1800 |
| 1 1800 |
| 1 1900 |
|---------------|
| 2 2600 |
| 2 3100 |
| 2 3200 |
|---------------|
| 3 3000 |
| 3 3800 |
| 3 5500 |
+---------------+

B.2.11 Returned saved results, precision, scalars
A lot of times, you want to use a value that appears on the screen, either to generate
a new variable, or to do some other kind of calculation. Returned saved results
are the most useful way to do that. After any command, you can type return
list to see a list of items you might want to use, e.g.
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su trunk, d
ret li
gen mt=r(p50)

or sometimes you might get a number that way that doesn’t show up on the screen
explicitly, e.g.

tab trunk
ret li
gen nvals=r(r)

where r(r) is the number of distinct values in the table.
There’s really no reason to generate a variable that takes on the same value

for every observation, as I just did, especially on a big dataset (where space in
memory is at a premium). If we want to use a single number later in our do-file,
we can save it as a scalar like so:
scalar nval=r(N)

which is just the number of observations summarized in the table, but you have to
exercise some caution referring to a scalar, thanks to Stata’s eagerness to interpret
pieces of expressions as variables:

gen test=nval
gen test2= scalar(nval)
su test* nvals

Here Stata wanted very badly to interpret the nval you typed as a variable,
and there was a variable named nvals that nval was a good abbreviation for,
so Stata used that and bypassed your scalar–a good reason to always use the
scalar(name of scalar) construction, even when it seems redundant.

B.2.12 Display, Formats, Datatypes, and Precision
If you just want to do a simple calculation, say average number of observations
per cell, which is r(N) divided by r(r), you can use the display command (ab-
breviated di):

tab trunk
di r(N)/r(r)

which is very handy as a calculator, too:

di _pi, ln(_pi), tan(_pi/4), norm(1.96)
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and you can change the display format of the numbers on the screen easily:
di %20.18f _pi

using the same kinds of formats available to assign to variables (see help format)
which are really helpful for variables mainly when it comes to displaying dates
(see help dates) in my experience. But the mention of display formats for
variables brings up a related point that always seems to trip people up:
gen tenth=_n/10
su tenth if tenth==6
su tenth if tenth==5.9

Stata finds no observation with tenth equal to 5.9 but we clearly think that obser-
vation 59 should have that value, and if we look (via list tenth in 58/60)
it sure looks like it does. The problem here is that Stata thinks in double precision
(see help data types) using 8 bytes per number, but variables are usually
defined in float precision (4 bytes), and tenths have no exact representation in bi-
nary numbers. If you write out the value of 5.9 that was used in su tenth if
tenth==5.9, and the value of tenth in observation number 59, you can see
the source of the problem more clearly:
di %20.18f 5.9
5.900000000000000400
di %20.18f tenth[59]
5.900000095367431600

and these two numbers are not equal. You could create you variable as a double
(with higher precision):
gen double t2=_n/10
su t2 if t2==5.9

or you could round to float precision:
su tenth if tenth==float(5.9)

to get around this problem. It doesn’t come up that often, but it does seem to
confuse people when it does. If you always use integer values, you will never run
into this problem.

B.3 The Stata Macro
What are called “variables” or “literals” in other programming languages are
macros in Stata. Before any command is run, all the macros in the command
get interpreted.
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B.3.1 Globals
Global macros (see help global) are defined as a number or string, with or without
=
global test="seven"
global test "seven"
global test=7

Global macros are referenced using a dollar sign:

display \$test
display \${test}

The brackets are better style, since display $test7 is interpreted as display $test7
which is evaluated as display which displays nothing, but display $test7 is inter-
preted as display 77 which displays the number you wanted.

B.3.2 Locals
Local macros (see help local) are defined as a number or string, with or without
the equal sign:

local test="eight"
local test "eight"
local test=8

Local macros are referenced using two kinds of single quotes:

display ‘test’

Make sure you get that first quote right (it’s on the same key as the tilde ˜ on most
keyboards).

What does the = do? The equal sign denotes immediate evaluation, instead of
assignment, i.e. Stata figures out what goes in the local now, rather than looking
back to see what’s there when you reference the macro later. Note that immediate
evaluation limits the length of a local to about 245 characters, and immediate
evaluation means the local won’t change if other stuff changes.

What’s the difference between locals and globals? Globals stick around, and
overwrite existing globals (bad practice when avoidable). Locals disappear, and
occupy a safe part of memory (but can’t be seen when your do-file or program is
done).

Why use them? They don’t just save retyping–they save making mistakes.
There are also many useful extended functions (see help extended fcn, which is



B.3. THE STATA MACRO 169

linked from help macro). In particular, anything you can display, you can put in a
macro with e.g. .

local t: display _pi " is the ratio in question"

which can come in handy for putting numbers in a given display format (rounding,
significant digits, dates, etc.).

The order of evaluation of macros is set up in the only way that makes sense.
Macros are evaluated first, before any other parsing is done. As with expressions
enclosed in parentheses in math operations, macros are evaluated from the “in-
sidemost” out. If you have a local called test that contains 7 and a global called
row7 that contains pi, you could display $row‘test’. If you type

loc a -1
display ‘a’ˆ2
display (‘a’)ˆ2

the first result is negative one, because Stata first puts the contents of the macro in
there, then evaluates -1ˆ2 as the negative of the square of one. For this reason, it
often makes sense to add parentheses around macros in expressions. It never does
any harm to wrap them in parentheses, and it could be a big help.

All of the local macro extended functions are available without first defining a
local macro:

local t: display _pi " is the ratio in question"
gen tvar="‘t’"

is equivalent to

gen tvar="‘: display _pi " is the ratio in question" ’"

which is just a shortcut, but can really come in handy.

B.3.3 Scalars
Scalars are defined only with the = (evaluation, not assignment)

scalar test=7
scalar test="seven"

Scalars are best referenced using scalar(name), e.g. display scalar(test).
Why? Try this:
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clear
range test 0 1 2
display test
list test in 1
display scalar(test)

Scalars, matrices, and variables share the same “namespace” or memory addresses
for names, so you it’s a good idea to reference a scalar using scalar() and to
reference a matrix using matrix() and to set varabbrev off, to make sure
you are not accidentally referring to a value in the wrong object altogether.

The “shortcut” method of condensing a local definition into an evaluated bit of
code to be included in another command turns out to be very handy, and is espe-
cially important to understand when reading other people’s code. As an example,
consider the following:

sysuse auto, clear
ins rep
local n=r(N)
local u=r(N_unique)
local l: var lab rep
hist rep78, ti("‘l’, ‘g’ obs") bin(‘u’)

versus this:

sysuse auto, clear
ins rep
hist rep78, ti("‘:var lab rep’, ‘=r(N)’ obs") bin(‘=r(N_unique)’)

both of which do the same thing. Sometimes only the first of these approaches
will work, but it’s often easier to use the latter approach.

B.3.4 Ifcmd

We saw the if qualifier already, which restricts the scope of a command like
generate, but there is another if which is a command in its own right (not a
qualifier) with a help file at help ifcmd. The if command executes a block of
code (enclosed in curly brackets) once, if the condition that follows the command
is true, or skips the block of code if it’s not. So it’s related to while, except it only
runs once. The related command else follows an if command, and executes a
block of code (enclosed in curly brackets) once, if the previous if command
failed to execute its block. This command is particularly handy if you’re looping
in a do-file, and want to execute some additional code only for certain values, or if
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you want to use a returned result (the mean, say) and execute code only if it falls
in some range.

One thing that always seems to confuse people is the difference between the
two uses of if so make sure you know the help files at help if and at help
ifcmd. What output do you think the code below produces?

sysuse auto, clear
if foreign==1 {
g dom==0
}
su dom

I don’t exactly understand how people seem to get this wrong at the rates they do,
but I suspect it comes from some faux ami analogy to SAS or SPSS. It’s common
enough to warrant a FAQ: http://www.stata.com/support/faqs/lang/ifqualifier.html

B.4 Graphs
We’ve seen a plot produced by the inspect command, and a similar histogram
can be produced by the histogram command, abbreviated hist. Most graphs
are produced by the graph command, which has a number of subcommands,
including twoway, bar, box, pie; and others. The bulk of the good graphs will
be produced by twoway, a graph subcommand for graphing some variable(s)
on the y axis (ordinate) versus some variable on the x axis (abscissa), that has its
own subcommands, including:

scatter scatterplot
line line plot
area line plot with shading
bar bar graph
rarea range plot with area shading
tsline time-series plot
lowess LOWESS line plot
lfit linear prediction plot
qfit quadratic prediction plot
function line plot of function
histogram histogram plot
kdensity kernel density plot

all with their own very useful help files. Note that bar graphs can be produced
by graph bar or by graph twoway bar, the first with an easier syntax for
some people, and the second with a lot more powerful control over placement and
look of bars.
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Most of the examples below are linked from help twoway, and there are many
examples at http://www.stata.com/support/faqs/graphics/gph/statagraphs.html, but
if you read no other graph help file, you should read help scatter at least.3 I also
recommend reading help schemes (I have set scheme s2mono, perm on my com-
puter). If you want 3D graphics, you will have to go to another program—it is one
of the few gaps in Stata’s repertoire. Or you use the trick in figure 1.2.

One alternative to the graph command is the Stata 7 graph command, now
available as the gr7 command. This command produces twoway graphs, including
scatter and line graphs, very quickly, though they are not as pretty.

B.4.1 Scatter or Line Graphs
The scatter graph, part of the twoway suite, is the workhorse of graph com-
mands, and a workhorse of descriptive statistics (and regression diagnostics as
well). Here’s a quick example:

sysuse uslifeexp2, clear
scatter le year

where you can see immediately the impact of the Spanish Flu relative to various
wars. You can add options to pretty it up, if you like:

sysuse uslifeexp2, clear
scatter le year, subti("Life expectancy at birth, U.S.") note("1") caption("Source: National Vital Statistics Report, Vol. 50 No. 6")

and there are a few hundred thousand ways you might modify that graph with
options, so I won’t go into detail. The options are all in the help files.

One of the common options on a scatter plot is to connect the dots:

sysuse uslifeexp2, clear
scatter le year, c(l)

and sometimes to suppress the dots after connecting them:

scatter le year, c(l) m(i) [fig for Life expectancy at birth, U.S.]

The last is so common, in fact, there is a separate command to make it easier
to type:

sysuse uslifeexp2, clear
line le year

3There are also some nice FAQs at http://www.stata.com/support/faqs/graphics/ and to really
see what Stata can do, check out Mitchell (2008).
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but note that the dots are graphed in the sort order of the data, which can result in
some unpleasant looking graphs unless you specify the sort option:

sysuse auto, clear
line mpg weight
line mpg weight, sort name(s)

The name option is handy when you want to have a number of graphs open at
once for comparison (or to combine them via graph combine).

B.4.2 Density and Local Polynomial Graphs
The last graph (line mpg weight, sort) is getting close to specifying an
empirical model: mpg declines as weight increases. As useful as scatter or
line plots and histograms are in small datasets, they rapidly become untenable
in large datasets. A good way to get sense of the distribution of a variable (or a
residual after a regression) or the functional relationships between pairs of vari-
ables in a large dataset is to use kernel estimators like kdensity or lpoly. Ker-
nel estimators use subsets of the data and reweight to construct local estimates, for
example of the proportion of cars with mileage “near” 21 mpg (a kernel density
estimator), or the effect of another 100 pounds on mpg “near” 3000 lbs (a kernel
regression estimator).

sysuse auto, clear
hist mpg, name(h)
kdensity mpg, name(k)

You can get the values that hist uses with the undocumented command
twoway histogram gen and then graph them with tw bar, which is handy for
combining graphs:

twoway__histogram_gen mpg, bin(8) start(12) gen(f x)
tw bar f x || kdensity mpg

The user-written kdens (on SSC) offers even more flexibility than kdensity.
In Stata 10, local polynomial regression is performed with the command lpoly,
but the near-equivalent command locpoly is available via findit for prior ver-
sions.
net from http://www.stata-journal.com/software/sj6-4/
net inst st0053_3
line mpg wei, sort name(bumpy)
locpoly mpg wei, name(smooth)
lpoly mpg wei, name(smooth2)
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The lowess command is also available in Stata versions before Stata 10, but
I’ve never liked it as much, mainly because it does not offer the at() option
with the generate() option, and does not give the same control over kernels.
The at() option and generate() option are especially helpful if you want to
overlay two smoothed graphs, and use the default bandwidth of the first and the
bandwidth for the second.

sysuse auto, clear
g m=(16+_n)*100 in 1/32
la var m "Weight" locpoly mpg wei if for==1, nogr at(m) gen(mfor)
lpoly mpg wei if for==0, nogr at(m) gen(mdom)
line mfor mdom m, leg(lab(1 "Foreign") lab(2 "Domestic"))

B.4.3 Bar Graphs

You can get simple bar graphs with graph bar but more flexibility with twoway
bar:

sysuse sp500, clear
gr bar high in 1/4, over(date)

where the legend on categories shows their numeric value (dates measured as days
since January 1, 1960) instead of a more legible format. With twoway bar the
defaults are a bit friendlier:

twoway bar high date in 1/4, yla(1300(20)1340) barw(.5)
twoway bar high date in 1/4, yla(1300(20)1340) barw(1.5)

and you can alter the data in clever ways to get total control over the look of the
graph, e.g. overlapping bars of arbitrary width, different labels, etc.:

replace date= date+(2-_n)/3 in 1/4
twoway bar high date in 1/4, yla(1300(20)1340) xla(14977 "Jan 2" 14979 Jan 5")

A related command is twoway dropline:

sysuse sp500, clear
tw dropline change date in 1/57, yline(0, lstyle(foreground))

and a handy command when there is a lot of data is twoway spike:

sysuse sp500, clear
tw spike change date in 1/57
tw spike change date
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B.4.4 Area Graphs
Area graphs are handy for showing meaningful areas between a curve and an axis
(if the running integral has some real interpretation):

sysuse gnp96, clear
twoway area d.gnp96 date
twoway area d.gnp96 date, xla(36(8)164, angle(90))

yla(-100(50)200, angle(0)) yti("Billions of 1996 Dollars")
xti("") subti("Change in U.S. GNP", position(11))
note("Source: U.S. Department of Commerce, Bureau of Economic Analysis")

And a range plot with area shading (tw rarea) is useful when the area between
two functions is informative:

sysuse sp500, clear
twoway rarea high low date in 1/57

This is handy for custom standard error graphs (but see lfitci for an auto-
mated solution):

sysuse auto, clear
qui regress
mpg weight
predict hat predict s, stdf
gen low = hat - 1.96*s
gen hi = hat + 1.96*s
tw rarea low hi weight, sort color(gs14) || scatter mpg wei

Note that we graphed the shaded area first and then the scatterplot. Typing

tw scatter mpg wei || rarea low hi weight, sort color(gs14)

would superimpose the shading on the scatter, obscuring the dots.

B.4.5 Mapping
There are handy FAQs on the Stata website describing how to make maps in Stata,
using two user-written commands (tmap for Stata 8 and spmap for more recent
Stata versions, both available from SSC).

tempfile t
copy http://pped.org/stata/usa.dta ‘t’.dta
use http://pped.org/stata/spop90.dta, clear
spmap p if LON>=-98 using ‘t’.dta, id(id) cln(5)
erase ‘t’.dta
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Lines can be added with options xline() or yline(). See help added text options
for one way of adding text boxes. Note you can also construct maps manually if
you need more control over the graph.

use http://pped.org/stata/spop90.dta, clear
egen c=cut(p), g(5) lab
keep if LON>=-98
g _ID=id
joinby _ID using http://pped.org/stata/usa.dta
g newpoly=sum(mi(_X))
egen g=group(newpoly id)
qui levelsof g, loc(is)
loc g
foreach i of loc is {
su c if g==‘i’, mean
loc p "gs‘=16-r(mean)*3’"
loc g ‘"‘g’ area _Y _X if g==‘i’, fc(‘p’) lc(gs0) nodropbase||"’
}
loc o ‘"text(37 -70 "DC belongs" "over there")"’
loc o ‘"‘o’ yla(35 " ", nogrid notick) xla(-85 " ", nogrid notick)"’
loc o ‘"‘o’ leg(off) xscale(off) yscale(off fill) xsize(4) ysize(4)"’
tw pcarrowi 35 -71 37.5 -76|| ‘g’ , ‘o’

Similar approaches work for presenting multidimensional graphs as a map
where colors of different regions correspond to heights above the plane. This is
often called a “heat map” by analogy to the colored weather maps that may ap-
pear in your newspaper. For example, tddens on SSC presents two-dimensional
kernel density estimates as a heat map using this kind of approach.

B.4.6 The Graph Editor

As of Stata 10, you can click on a graph and add graphic elements such as text
or lines interactively, using the new Graph Editor. Assuming your Stata is up to
date, you can also click a Record button to echo those changes as commands (save
them to a text file), which I highly recommend so you can add the commands to a
do file so that you can reproduce your work at a later date.

B.5 Looping, Programming, and Automating Out-
put in Stata

Reproducibility, error reduction, ease of use, and portability all depend on good
programming style. Here a three simple reasons for using loops:
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1: You shouldn’t type any parameter (a number or string of characters that you
might later change) more than twice in a program or do-file. If you do, you are
inviting a situation where you change two instances and forget the third, and never
notice the output is flawed.

2: Comments are good, but clean code is better. Comments tell you what the
programmer intended, but might not help you fix or adapt the code easily. Clean
code does both.

3: A little bit of programming sophistication goes a long way. If you are
reformatting tables of output more than once when the output changes, you would
have been better off programming the output (table layout and number display
format) in the first place. If you are doing the same thing over and over (similar
regression, similar graphs, similar paper topics), you are at risk of becoming a dull
boy. Doing the same thing over and over is what computers are for.

B.5.1 Looping
Looping is how you make the computer do your work for you, and save yourself
some carpal tunnel. Use foreach or forvalues, rather than for or while
(while works, and even for still works, but they are harder to use, and the for
command had some problems and is now undocumented). foreach in particular
has a beautifully simple syntax:

foreach v in some list of stuff {
does this 4 times, for ‘v’="some" and ‘v’="list" etc.
presumably does something with ‘v’ itself
}

Make sure the curly braces are as shown (no code after the first, and the second
on a line by itself).

The similar command forvalues steps through a numeric list:

forvalues v=1/10 {
does this 10 times, for ‘v’=1 and ‘v’=2 etc.
presumably does something with ‘v’ itself
}

Note that
forvalues v=1/10 {

is equivalent to

foreach v in 1 2 3 4 5 6 7 8 9 10 {
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but the first is easier to type.
Perhaps handiest is the second syntax of foreach, i.e. one of the following:

foreach lname of local lmacname {
foreach lname of global gmacname {
foreach lname of varlist varlist {
foreach lname of newlist newvarlist {
foreach lname of numlist numlist {

so you step though each item in any list stored in a macro, or have Stata do some
operations to eacha variable in a list. Note also that

foreach v of numlist 1/10 {

is equivalent to

forvalues v=1/10 {

All of these loops can be nested: just make sure you use different names for
the local macros created:

foreach v of numlist 1/10 {
foreach v of numlist 1/10 {
di "Row ‘v’ and Column ‘v’ value is "
}
}

will obviously not work, but this is fine:

foreach r of numlist 1/10 {
foreach c of numlist 1/10 {
di "Row ‘r’ and Column ‘c’ value is "
}
}

See also the continue and nobreak commands for exiting a loop prema-
turely or preventing exit from a loop or program.

The levelsof command works very nicely with foreach to do something
for every value of a variable, e.g.

webuse nhanes, clear
levelsof race, local(r)
foreach v of local r {
svy, subpop(if race==‘v’): tab sex higbp, row
}
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B.5.2 Output: The file, estout, and xmlsave Commands
The file command allows you to read or write to text or binary files. This means
that you can write anything you can think of to a file. You could have a whole
paper (text, tables, graphics, etc.) written out by one do-file, in theory, or even
write out a file that would be an executable program (not that anyone would ever
do that) and then run it. In particular, you can write out in any format the output
from tabulations or regressions available via return or ereturn or built-in shortcuts
like b[var] (gives the coefficient on var) or se[var] (gives the SE on var). For
example:

webuse nhanes2, clear
qui svy: tab race diab, row ci
mat rowpc=e(b)
file open d using /b.txt, write replace
file write d "Race" _tab "Percent Diabetic"
forv r=1/3 {
file write d _n "‘: lab (race) ‘r’’"
file write d _tab "‘: di rowpc[1,‘=‘r’*2’]’"
}
file close _all
type /b.txt
local excel="C:\Program Files\MSOffice2000\Office11\Excel.exe"
winexec ‘excel’ \b.txt

And it would be easy to embed the preceding in a larger loop that stepped through
a list of diseases, and did tests of significance, etc., and then opened it all up in
Excel, if you like that kind of thing.

The estout command from SSC automates the creation of tables of coeffi-
cients from estimation commands or of summary statistics, and is far better than
crappy alternatives like outreg. Install it with ssc install estout. This is a re-
ally useful command, and has myriad options. The command’s own website
at http://fmwww.bc.edu/repec/bocode/e/estout/ has plentiful examples, showing
how to create a table in Microsoft Word or LATEXwith very little effort and very
high reproducibility.

The xmlsave command allows you to save a Stata dataset in an XML file
format: either Stata’s .dta or Microsoft Excel’s SpreadsheetML format. So you
can collapse your data into a dataset of means by year, say, then save in Excel
format. A user-written command xml tab (on SSC) offers a way to write out
various formatted tables to Excel-type files. You may find it especially handy
when used to create and output various simple tables of conditional means:

tabstat price mpg weight length, by(foreign) save
tabstatmat A
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matrix TAB=A’
xml_tab TAB, replace

In the above, tabstat generates a table of means for the list of variables cate-
gorized by foreign. tabstatmat (on SSC) saves the results to matrix A with
three rows for Domestic, Foreign and Total. In the columns of matrix A are the
means for the listed variables. The transposed matrix A is the matrix TAB, which
xml tab outputs into the default XML file. You can see more examples of using
xml tab in the file xml tab example.do that accompanies xml tab on SSC.

B.5.3 The program Command, and ado Files
Any bit of code you want to repeat should be coded as a program. So a bit of
text, or a number, should be coded as a macro, but some lines of code that, say,
calculate some statistics, or convert some amounts into real dollars, or write out a
table of estimates, can be written as a program, and then to run the code, you just
type the name of the program.

cap program drop dtab
program dtab
syntax varname
webuse nhanes2, clear
qui svy: tab race ‘varlist’, row ci
mat rowpc=e(b)
file open d using /b.txt, write replace
file write d "Race" _tab "Percent suffering from ‘varlist’"
forv r=1/3 {
file write d _n "‘: lab (race) ‘r’’"
file write d _tab "‘: di rowpc[1,‘=‘r’*2’]’"
}
file close _all
type /‘varlist’.txt
end

Having defined a program dtab, you can type, e.g.
dtab diab
dtab heart
dtab highlead

and so on. If you saved that bit of code in a file called dtab.ado, you could type
those lines (e.g. dtab diab) to get an instant table at the command prompt, or in
an unrelated do-file. The ado file loads a program automatically; that is how a
lot of Stata’s official commands are written (and you can read their code, with
the viewsource command, which is instructive, to say the least). There’s a lot
more about program in the Programming manual, of course.
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B.5.4 Automating Appendices
Blasnik (2005) documented the handy trick of using a mail merge to put a series
of Stata output files into a Microsoft Word document. I’ve used the approach in
e.g. the appendices of Horwitz and Nichols (2007) (see also Horwitz and Nichols
2009), so I can attest that it can be quite handy in circumstances where you have
to produce a lot of pages of the same type of thing, and you have to work in
Microsoft Word.

B.5.5 Finding Nearest Neighbors
Loops can also step through each observation in turn, though this is time-consuming.
Most cases can be handled much more quickly and easily with the by construct,
but occasionally a loop over observations makes sense. One common case is
where we have two datasets with locations and we want to find the nearest loca-
tion in another dataset. This also works when the second dataset is a shapefile of
polygon vertices used in mapping, and we want to find the distance of points in
the first datasets to shapes in the second (the shapes could be rivers and lakes, for
example, and we want to find the nearest water).

In the simplest case, we just want the distance to the nearest object in the
second dataset. We use the dataset with points we want to compute minimum
distance from, merge (not on variables, just an unmatched merge) the second
dataset with shapes or points we want to compute distance to, then loop over
observations in the first dataset: for each, we compute distance to points in the
second (if the second is a shape file, we are computing distance to the nearest
vertex of a polygon) and store the minimum distance to a variable we have initial-
ized as missing. If we later decide we need other information saved, we simply
add commands inside the loop to save that other information (e.g. ID number of
the nearest shape, or the area of nearest shape, or the number of shapes within 50
miles, or what have you).

For example, suppose we have a dataset mnch with locations of charter schools
(stored as signed decimal degrees of latitude and longitude) and a dataset mnlakes
of lake boundaries, and we want to find the nearest lake to each school. A solu-
tion is shown in Exhibit B.5.6. The distance calculation is done by vincenty
(on SSC), which is a fairly accurate means of calculating distances on the Earth,
where Euclidean distance is wholly inadequate, but could also be calculated by
hand using whichever formula we prefer.

Exhibit B.5.6 Code calculating the distance to the nearest object in another dataset.
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use http://pped.org/mnch, clear
local n=_N
g double m=.
merge using http://pped.org/mnlakes
qui forv i=1/‘n’ {
vincenty lat lon y[‘i’] x[‘i’], v(d)
su d, meanonly
replace m=r(min) in ‘i’
drop d
}
drop _m i lid lat lon
li in 1/20

Figure B.2: Schools and larger lakes in Minnesota, pretending Lake Superior does
not exist and Lake of the Woods exists only so long as it is in Minnesota.

We could also save characteristics of the nearest match, or average charac-
teristics of the nearest several matches, or a weighted average over all potential
matches, with weights related to distance, or any other statistic, by doing more
calculations inside the loop. For example, to save the identifiers of every object
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within a ten-mile radius we could generate an empty string variable ids and
then add a foreach loop inside our loop over observations to add each object
identifier to the string variable ids.

Exhibit B.5.7 Code concatenating IDs of objects with distance less than 10.

qui levelsof lid if d<10, loc(vs)
foreach v of loc vs {
qui replace ids="‘v’ "+ids in ‘i’
}

B.6 Simulation and Bootstrap
The basic idea of the simulation model is to draw error terms from some distri-
bution, then generate the outcome variable using known parameter values, and
estimate those same parameters. This can give very good estimates of the small
sample performance (both bias and coverage) of an estimator for data like yours,
if you use your actual data, but impose known parameter estimates and draw er-
rors. To get coverage rates or the actual size of a test, you need to repeat the draws
many times, say ten thousand or more, but on modern computers this can be done
in a day. As good as the bootstrap command is, it may be necessary some-
times to do the resampling manually, and collect results at the end, which can also
be done with simulate.

Note that simulate just calls a program over and over, and returns a
dataset of collected results. Whatever you want to simulate should happen in-
side the body of the program. Anything that can be done with simulate can
also be done with a loop, counting from one to the number of draws desired, and
post inside the loop to a postfile, but it is usually easier to use simulate.
One point to bear in mind is that simulate will automatically report on the last
estimation result, even for an rclass program, so if you want simulate to collect
the returned scalars instead, you can end your program with ereturn clear.

B.6.1 Simulation examples
For example, suppose we are interested in the coverage rates of some random-
effects estimators, using cluster-robust and heteroskedasticity-robust standard er-
rors. Exhibit B.6.2 shows rejection rates (for one kind of data) for RE of nine per-
cent for a nominal five percent alpha (size of test) with heteroskedasticity-robust
SEs but 41 percent with cluster-robust SEs.



184 APPENDIX B. DATA AND STATA

Exhibit B.6.2 A simulation to estimate size of tests in RE with lognormal time-
invariant covariates and clustered errors.

clear all
prog reclr, rclass
version 10.1
drawnorm x1-x10 v, n(50) clear
forv i=1/10 {
replace x‘i’=exp(x‘i’)
}
g id=_n
expand 20
g e=rnormal()
bys id: replace e=e[_n-1]/2+e/2 if _n>1
g y=(x1+x2+x3+x4+x5)/5+v+e
xtreg y x1-x10, cl(id) i(id) re
test x1 x2 x3 x4 x5
return scalar c1=r(p)<.05
test x6 x7 x8 x9 x10
return scalar c0=r(p)<.05
xtreg y x1-x10, r i(id) re
test x1 x2 x3 x4 x5
return scalar r1=r(p)<.05
test x6 x7 x8 x9 x10
return scalar r0=r(p)<.05
eret clear
end
simul, seed(1) rep(10000): reclr
su

Exhibit B.6.3 shows rejection rates (for one kind of data) for RE of nine per-
cent for a nominal five percent alpha (size of test) with heteroskedasticity-robust
SEs but 41 percent with cluster-robust SEs.

Exhibit B.6.3 A simulation to estimate size of tests in FE and RE with lognormal
clustered covariates and clustered errors.

clear all
prog reclr, rclass
version 10.1
drawnorm x1-x10 v, n(50) clear
g id=_n
expand 20
forv i=1/10 {
replace x‘i’=exp(x‘i’*4/5+rnormal()/5)
}
g e=rnormal()
bys id: replace e=e[_n-1]*4/5+e/5 if _n>1
g y=(x1+x2+x3+x4+x5)/5+v+e
xtreg y x1-x10, cl(id) i(id) re
test x1 x2 x3 x4 x5
return scalar c1=r(p)<.05
test x6 x7 x8 x9 x10
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return scalar c0=r(p)<.05
xtreg y x1-x10, r i(id) re
test x1 x2 x3 x4 x5
return scalar r1=r(p)<.05
test x6 x7 x8 x9 x10
return scalar r0=r(p)<.05
xtreg y x1-x10, i(id) re
test x1 x2 x3 x4 x5
return scalar o1=r(p)<.05
test x6 x7 x8 x9 x10
return scalar o0=r(p)<.05
xtreg y x1-x10, cl(id) i(id) fe
test x1 x2 x3 x4 x5
return scalar fec1=r(p)<.05
test x6 x7 x8 x9 x10
return scalar fec0=r(p)<.05
xtreg y x1-x10, i(id) fe
test x1 x2 x3 x4 x5
return scalar feo1=r(p)<.05
test x6 x7 x8 x9 x10
return scalar feo0=r(p)<.05
eret clear
end
simul, seed(1) rep(10000): reclr
su

B.6.4 Bootstrap examples
One can also do a manual bootstrap using the simulate command. One way to
do that is as follows (this example with 10 replications takes about 5 minutes to
run, so a real application with 1000 replications or more might take many hours).

Exhibit B.6.5 An example of a manual boostrap for mfx output.

cap pr drop _all
pr eachone, rclass
drop _all
use /out
bsample, cluster(idcode)
ivprobit work age ttl (msp=south nw)
mfx, predict(p)
mat mfx=e(Xmfx_dydx)
mat es=mfx[1,1..3]
return scalar msp=es[1,1]
return scalar age=es[1,2]
return scalar ttl=es[1,3]
end
webuse nlswork, clear
gen work=wks_w>0 if !mi(wks_w)
g nw=race>1
keep work age ttl msp south nw id
ren ttl ttl
save /out, replace
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qui ivprobit work age ttl (msp=south nw)
mfx, predict(p) diagnostics(vce)
local n=e(N)
mat mfx_est=e(Xmfx_dydx)
mat est=mfx_est[1,1..3]
simulate msp=r(msp) age=r(age) ttl=r(ttl), reps(10) seed(12345): eachone
bstat, stat(est) n(‘n’)

Not all of the options available in bootstrap are available this way, and
the nomenclature may differ as well. For example, the help file for bootstrap
says “Type estat bootstrap, bca to display the BCa confidence interval generated
by the bootstrap command.” whereas the help file for bstat shows an option ac-
cel(vector) specifying “the acceleration of each statistic, which is used to construct
BCa CIs.”

B.7 Mata Programming
Introduced with Stata 9, Mata is a separate programming language within Stata
that is compiled, and runs with speed comparable to C and other high-level lan-
guages. Its syntax is similar to C, and it offers a library of convenient matrix func-
tions. Stata 10 added a large number of new Mata features, including the general
optimize utility in Mata, which is useful in a variety of ways. Stata 11 added an
even larger number of new Mata features, including moptimize. The Mata man-
uals are online; just type help mata to get started or visit http://stata.com/help.cgi?mata
(all the help files are on the web as well). However, the help files do not have that
many helpful examples. Below are two simple examples, demonstrating a small
fraction of Mata’s tremendous capacities: (1) writing out a simple GMM estima-
tor, and (2) solving a complicated function.

Mata is fast, because functions are compiled, rather than interpreted. I.e. if
you look at what Stata sees in the pre-Mata ”ado language” version of a program,
you see code like the text in Exhibit B.7.1; if you look at what Stata sees in a Mata
function, you see bytecode like in Exhibit B.7.2.

Exhibit B.7.1 A block of interpretable code.

forvalues j = 1/‘p’ {
tempvar x‘j’
qui gen double ‘x‘j’’ = .
local xs ‘xs’ ‘x‘j’’
}
qui gen double ‘arg’ = .
qui gen double ‘karg’ = .
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forvalues i = 1/‘n’ {
qui replace ‘arg’=(‘x’-‘xgrid’[‘i’])/‘h’ if ‘touse’
qui replace ‘karg’ = .
if "‘kern’" == "biweight" {
local con1 = .9375
qui replace ‘karg’ = ‘con1’*(1-(‘arg’)ˆ2)ˆ2 /*
*/ if ‘touse’ & abs(round(‘arg’,1e-8))<1
}

Exhibit B.7.2 A block of interpreted code.

2220 7b0d 0a09 0971 7569 2072 6570 6c61
6365 2060 6b61 7267 2720 3d20 302e 3520
6966 2061 6273 2872 6f75 6e64 2860 6172
6727 2c31 652d 3829 293c 3120 2620 6074
6f75 7365 270d 0a09 7d0d 0a09 656c 7365
207b 2009 0909 092f 2f20 6570 616e 6563
686e 696b 6f76 0d0a 0909 6c6f 6361 6c20
636f 6e31 203d 2033 2f28 342a 7371 7274

Of course there is a readable version of the Mata code, before it is compiled
into bytecode that is optimized for the computer to read. You write Mata in the
readable version, and then Stata compiles into the bytecode before running it. The
first time you run your newly written programs, there may be only a small speed
advantage, but on subsequent occasions, it will run perhaps 2 to 10 times faster.

The syntax of Mata is quite different from Stata’s ”ado language” but still
fairly easy, especially if you have used C or C++ before.

B.7.3 Interactive Use

You can enter Mata in several ways; but the easiest is type mata and then type
Mata commands until you are done in Mata, then type end.

For example, to multiply two matrices, you could type in Stata:

matrix a=(1,2,3)
matrix aa=a’*a
matrix list aa

or you could type:

mata
a=(1,2,3)
a’a
end
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to get the same output from Mata.
Note that to get the output of some calculation, you can just type the calcu-

lation. To assign it to some named object, just type name=result. We could have
also typed:
mata
a=(1,2,3)
aa=a’a
aa
end

where we first assign the result to a named entity, then get Mata to display the
named entity by simply typing its name (the simplest form of calculation, if you
will, is just the identity function).

Or we could type:
mata
a=(1,2,3)
aa=a’a
st_matrix("A", aa)
end
matrix list A

where we create a matrix A in Stata (from the Mata matrix aa), exit Mata, and
then display the resulting calculation in Stata. Or we could:
matrix a=(1,2,3)
mata
a=st_matrix("a")
aa=a’a
st_matrix("A", aa)
end
matrix list A

This suggests the basic procedure for most interactions—do all the calculations
you can in Mata, to improve speed, then return them in Stata.

Mata has all the matrix functions of Stata, plus a lot more. Importantly, there
is no limit on the size of matrices, and matrices can contain strings or complex
numbers.

B.7.4 Defining New Mata Functions and Type Declarations
You make a new function in Mata like so:
type name(arguments)
{
contents
}
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where type is the type of entity the function returns, such as a matrix, or the special
type void, meaning the function returns nothing. The type of a Mata variable has
two pieces, the element type and organizational type (help [M-2] declarations)
and you can choose any one from each column:

eltype orgtype
------------ ----------
transmorphic matrix
numeric vector
real rowvector
complex colvector
string scalar
pointer ------------
----------

The default is the most general type: a transmorphic matrix, where transmor-
phic means that the matrix can be real, complex, string, or pointer; and matrix
means that the organization is to be r × c, r ≥ 0 and c ≥ 0. Here’s an example
function that swaps rows in a matrix:

real matrix swaprows(real matrix A, real scalar i1, real scalar i2)
{
B = A
v = B[i1, .]
B[i1, .] = B[i2, .]
B[i2, .] = v
return(B)
}

but all those type declarations are optional, so you could also write:

swaprows(A, i1, i2)
{
B = A
v = B[i1, .]
B[i1, .] = B[i2, .]
B[i2, .] = v
return(B)
}

Every variable created within a Mata function is ”private” meaning its scope
is just within the function, like a local macro. You can also declare variables to be
global by using the external declaration, which is a useful but dangerous way of
passing info back and forth between programs. Useful because you don’t have to
pass arguments, dangerous because if you accidentally modify a global variable,
it’s gone. For example, in a complex program, if you create two globals with the
same name, you will be replacing the first with the wrong values (the values of
the second), and may get some errors that are hard to track down to their source.
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B.7.5 Void Functions

One common type of function is the void function, which returns nothing. For
example,

void iv_pois(todo,b,crit,g,H)
{
external y,X,Z,W
m=((1/rows(Z)):*Z’((y:*exp(-X*b’) :- 1)))’
crit=(m*W*m’)
}

declares that the function iv pois has five arguments (two of which are used inside
the function, but all must be well-defined for the function to operate without spit-
ting out an error message). Then it says there are four globals that it’s going to
use, does some calculations to modify some variable crit, and that’s it. That partic-
ular function calculates the value of a Generalized Method of Moments objective
function, also called a criterion function.

B.7.6 GMM Estimation Using Mata

The Generalized Method of Moments (GMM), briefly, supposes that there are
some population moments that we can try to match in our sample by a good choice
of some parameter vector, e.g. in OLS where the population model is E(y) =
Xβ or with a mean-zero error term y = Xβ + ε the usual assumption is that
E(X ′ε) = 0 in the population. So we can try to make the sample analog true via
a good choice of b in an equation y = Xb+ e i.e. we try to make the mean of the
vector m = X ′e as close to zero as possible. The justification for this approach is
given by Hansen (1982), and in Stata 11, there is a new command that automates
this type of estimation, but walking through it in Mata is a useful exercise.

It’s not always possible to make a vector equal to zero, so instead we try to
make the sum of squared deviations from zero as small as possible, i.e. instead of
choosing b to set m=0 we choose b to minimize (m’Wm) where W is some weight
matrix. Each W defines a different GMM estimator. Choosing a weight matrix to
be the inverse variance estimate leads to the most efficient GMM estimator. The
instrumental variables (IV) version is a population model y = Xβ + ε plus the
assumption that E(Z ′ε) = 0 in the population. We can try to make the sample
analog true via a good choice of b in the equation y = Xb+ e i.e. we try to make
the mean of m = Z ′e = Z ′(y − Xb) as close to zero as possible by minimizing
the real-valued function m′Wm with our choice of b.
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As another example, consider the population model

E(y) = exp(Xβ)

which is the assumption in Poisson regression (like regressing the log of y on X,
but y=0 is not a problem). Usually we specify a non-negative error term ε with
mean one like so:

y = exp(Xβ)ε

Note that if ν = ln(ε) then y = exp(Xβ)exp(ν) = exp(Xβ + ν) so ln(y) =
Xβ+ν if y > 0, which is why Poisson regression of y onX is like OLS regression
of the log of y on X .

The assumption for an IV version of Poisson regression is that E(Z ′ξ) = 0
in the population, where ξi is the mean-zero error yi/ exp(Xiβ) − 1 (see also the
help file for ivpois on SSC). So we can try to make the sample analog true via
a good choice of b in the equation

y = exp(Xb)e

i.e. we try to make the mean of m = Z ′u = Z ′(y/ exp(Xb)− 1) as close to zero
as possible. Using a weight matrix W = (Z ′Z)−1, we minimize the real-valued
function m′Wm by choosing b.

It turns out to be pretty easy in Mata to minimize or maximize some arbitrary
function. Having already defined a function iv pois that takes a parameter b and
calculates the real valued function crit=(m’Wm) given b, we just need to tell Mata
that we want to minimize crit with our choice of b.

We need Z and X and y matrices: these are matrices of data, which we can
form from the variables on a Stata dataset like so:
clear all
use http://pped.org/card
g tousename=!mi(wage,educ,nearc4)
mata
y = st_data(., "wage", "tousename")
X1 = st_data(., "educ", "tousename")
Z1 = st_data(., "nearc4", "tousename")

Then we can add a constant term to both the X and Z matrices like so:
cons=J(rows(X1),1,1)
X = X1, cons
Z = Z1, cons

and calculate the weight matrix W:
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W=rows(Z)*cholinv(Z’Z)

Then pick some arbitrary starting vector, say a vector of zeros:
init=J(1,cols(X),0)

where the only real limitation on a starting vector in numerical optimization is that
the objective function has to be defined in a neighborhood of that starting value,
and that is always true in this problem for a zero vector, since exp(Xb) = 1 for
b = 0 and exp(Xb) is smooth in b at b = 0.

Then we declare a new variable to hold our optimization problem, and call
a few functions to set up the type of optimization we want. Then the function
optimize() finds the optimum and returns the vector b that optimizes the function.
Let’s just assign that to a new variable p. We can report the result by just typing p
in Mata, or use p in subsequent calculations.
S=optimize_init()
optimize_init_evaluator(S, &iv_pois())
optimize_init_which(S,"min")
optimize_init_evaluatortype(S,"d0")
optimize_init_params(S,init)
p=optimize(S)
p

The evaluator is designated as iv pois in the second line, and we specify min-
imization in the third line. The fourth line is more interesting. ”d” type evaluators
maximize or minimize a real-valued function, and ”v” type evaluators a vector-
valued function.
evaluatortype Description

"d0" function() returns scalar value
"d1" same as "d0" and returns gradient row vector
"d2" same as "d1" and returns Hessian matrix
"v0" function() returns column vector value
"v1" same as "v0" and returns score matrix
"v2" same as "v1" and returns Hessian matrix

In some statistical applications, ”v” type evaluators are more convenient to
code than ”d” type, particularly since one tends to think of a dataset of values ar-
ranged in matrix X, the rows of which are observations. A function h(p, X[i,.]) of
a parameter p can be calculated for each row i separately, as with a log likelihood,
and it is the sum of those resulting values that forms the function f(p) that is to be
maximized or minimized. All of Stata’s maximum likelihood routines are being
rewritten in this way.

The previous optimization problem can all be wrapped in a function that can
be called from within Stata like so:
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void i_pois(string scalar depvar, string scalar x,
string scalar z, string scalar tousename, string scalar beta)
{
external y,X,Z,W
y = st_data(., tokens(depvar), tousename)
X1 = st_data(., tokens(x), tousename)
Z1 = st_data(., tokens(z), tousename)
cons=J(rows(X1),1,1)
X = X1, cons
Z = Z1, cons
W=rows(Z)*cholinv(Z’Z)
init=J(1,cols(X),0)
b=init
S=optimize_init()
optimize_init_evaluator(S, &iv_pois())
optimize_init_which(S,"min")
optimize_init_evaluatortype(S,"d0")
optimize_init_params(S,init)
p=optimize(S)
st_replacematrix(beta,p)
}

where now we pass to the function i pois the list of variables that form X, Z,
and y, and an indicator for which observations we want to include (tousename),
then once the optimization is done, we store the parameter vector in the Stata
matrix designated ”beta” (the name of which we also passed as an argument to the
function i pois). The above is most of the SSC program ivpois (ssc install ivpois).
The remainder is a matter of parsing options, error-checking, and returning results.

So a new GMM estimator that you read about in the econometrics literature is
a matter of a few hours to program, once you get the hang of the most common
elements of the language (i.e. the first program might take a matter of a day or
two to write, but the second an hour or two).

B.7.7 Solving Functions
The foregoing GMM discussion also suggests a way to solve some complicated
function, e.g. f(p) = g(q) where f and g are real-valued functions of row vectors
p and q, writing h(r) = f(p) − g(q) = 0 where r = (p,q), and then we can find
solutions (or near-solutions for insoluble problems) by minimizing h(r)2 with our
choice of r.

Here’s a silly example to calculate the solution to ln(r) = 0

void obj(todo,b,crit,g,H)
{
crit=ln(b)ˆ2
}
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init=5
S=optimize_init()
optimize_init_evaluator(S, \&obj())
optimize_init_which(S,"min")
optimize_init_evaluatortype(S,"d0")
optimize_init_params(S,init)
optimize(S)

Note in the above that if you started at 0 you would get an error in this case,
since ln(0) is undefined. Everything would look fine until the last command, when
you would see:
: optimize(S)
initial values not feasible
r(1400);

In general, of course, there is no guarantee that an optimum is unique, so if it
is possible that there are multiple solutions to h(r) = 0 you would have to start the
optimization at many appropriately chosen starting points to see if the optimizer
finds different optimal parameter vectors.

Suppose you wanted to find the zeros of

y = x2 − 5x+ 4

and you were too lazy to use the quadratic formula (I chose this problem, of
course, because its analytic solution is so easy, whereas the numerical methods
are trickier). You could just type
void q(todo,b,crit,g,H)
{
crit=(bˆ2-5*b+4)ˆ2
}
sol=J(1,0,0)
void grid(n1,n2)
{
external sol, p
for (i=n1; i<=n2; i++) {
init=i
S=optimize_init()
optimize_init_evaluator(S, &q())
optimize_init_which(S,"min")
optimize_init_evaluatortype(S,"d0")
optimize_init_params(S,init)
p=round(optimize(S),10e-4)
if (!anyof(sol, p)) {
sol=(sol,p)
}
}
sol
}
grid(-10,10)
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The above code does the optimization for every starting value on a grid over
the integers -10 to 10 (and saves any solutions that are new to a Mata variable sol,
then reports its values). A function that took a vector as an argument would be no
harder to specify (though the appropriate grid search might be harder to specify).

A user-written program mm root() (in the moremata package by Ben Jann
on SSC) also finds zeros of a function, also using Mata. Sometimes using mm root()
to find a zero of f will be a lot faster than using official Stata’s optimize() to find
a min of f 2. For example, finding the modal kth order statistic in a sample of n
draws from a standard normal distribution, which is given by the zero of

f(x)=(k-1)*(1-normal(x))*normalden(x)
-(n-k)*normalden(x)*normal(x)-normal(x)*(1-normal(x))*x}

per Gupta (1961); see also Guenther (1977). In this case mm root() is far superior.
For n more than about 13, and k=n, optimize() skips over interior solutions

and skitters off toward a very large x where normalden(x) and 1-normal(x) both
approach zero. There is an alternative parametrization

f=(k-1)/normal(x)-(n-k)/normal(-x)-x/normalden(x)}

for which optimize() performs as well as mm root(), in terms of finding the
right answer, but optimize() takes about three times as long as mm root()
even in this case.

The example also illustrates a common pitfall in such problems, which fre-
quent users of ml know well—quantities like 1-normal(x) can easily reach zero
as x gets large even while the equivalent normal(-x) is nonzero. Similar problems
come up in many calculations, where numbers very close to zero can be stored
and manipulated but numbers equally close to another integer cannot; for exam-
ple, the logit of a very small number can easily be displayed and manipulated, but
the logit of a number close to one cannot.

. di invlogit((logit(1e-300)))
1.00e-300
. di invlogit(abs(logit(1e-300)))
1
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Appendix C

Human Capital

A motivating example throughout the book is the effect of education on earn-
ings, partly because anyone reading this book presumably has made some careful
choices about education and likely has thought a bit about the effect of those
choices on future earnings potential, and partly because the problem has a long
and storied history in economics and econometrics.

This appendix is just intended to give a flavor of the kind of reasoning common
in economics when dealing with a thorny estimation problem where outcome and
the treatment are both affected by some third factor. The example, measuring the
effect of education on subsequent earnings, is the paradigmatic thorny estimation
problem in economics, and many authors have explained these types of models,
including Willis (1987), Card (1999), Kling (2001), and Card (2001).

We start by making a lot of convenient assumptions, so the model is easy to
solve:

• there is no uncertainty, and individuals live forever.

• capital markets are perfect, and an individual i may borrow against future
earnings at a rate ri, so individuals act to maximize lifetime earnings.

• individuals have marginal productivity linearly increasing in completed school-
ing.

• competitive firms offer wages equal to observed marginal productivity.

• work intensity is constant, so there is no labor-leisure tradeoff, and people
either work or go to school.

197
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• schooling occurs at the beginning of life and ends once work begins (a bang-
bang solution).

• earnings are constant over the life cycle after schooling is completed.

Since an individual’s observed earnings at a point in time are a linear function
of completed schooling:

yi = ai + bisi

the natural estimation strategy is to regress individual earnings on education. But
regressing earnings on schooling in a heterogeneous population will produce very
different answers depending on the source of heterogeneity. Usually, those who
have a higher return bi will also choose a higher si, and those who have higher
baseline earnings ai will choose a lower si, and it seems likely that bi and ai are
correlated.

Suppose the only cost of schooling is forgone earnings yi. Then an individual
chooses si (the time to end schooling and begin work) to maximize

V (si) =
∫ ∞
si

yi(si)e
−ritdt

subject to si ≥ 0. Call the optimal choice s̃i, and for everyone with s̃i > 0 we
have the first order condition

−yi(s̃i)e−ris̃i +
∫ ∞
s̃i

y′i(s̃i)e
−ritdt = 0

or
y′i(s̃i)

ri
= yi(s̃i)

so
bi
ri

= ai + bis̃i

where the left side of the equation is the marginal return to more schooling (bi
dollars more forever, worth bi

ri
) and the right side is the marginal cost (one time

period of earnings lost).
We are abstracting from many important features of real decisions about school-

ing and labor markets, of course, but the point here is to focus only on the sim-
plest form of worker heterogeneity. Note that individuals have different earnings
because of differences in three parameters: ai or baseline ability (marginal pro-
ductivity in the absence of education), bi or returns to education, and ri or bor-
rowing costs. Let the average return to schooling be b = E(bi), and likewise let
a = E(ai) and r = E(ri).
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The population version of the regression we are estimating when we regress
individual earnings on education is Yi = α + βXi + εi and let us suppose εi is
uncorrelated noise (e.g. from classical measurement error in earnings), so

Yi =

(
bi
ri

)
+ εi = α + β

(
1

ri
− ai
bi

)
+ εi

Suppose we are interested in estimating the average return to schooling b.
Even if Xi (schooling, measured without error) is uncorrelated with εi, the

OLS estimator β̂ need not be unbiased or consistent for b since

E(β̂) =
Cov

(
b
ri
, 1
ri
− ai

bi

)
Var

(
1
ri
− ai

bi

)
and this need not equal b.

First, suppose there is no variation in bi and ai (i.e. bi = b and ai = a for all i),
so all the variation in earnings arises from variation in ri. Then the OLS estimator
β̂ is an unbiased estimate of b since

E(β̂) =
Cov

(
b
ri
, 1
ri
− a

b

)
Var

(
1
ri
− a

b

) =
bVar

(
1
ri

)
Var

(
1
ri

) = b.

Now suppose there is no variation in ri and ai (i.e. ri = r and ai = a for all
i), so all the variation in earnings arises from variation in returns bi. Then

E(β̂) =
(
r

a

) [bE ( 1
bi

)
− 1

]
Var

(
1
bi

)
and the OLS estimator β̂ is generically not an unbiased estimate of b. We cannot
even sign the bias, and even if r = a, the bias will vary wildly depending on the
distribution of bi.

If bi is distributed lognormally, say bi = ezi with zi ∼ N(−3, 0.25), then b =

E(bi) = .064 and E( 1
bi

) = 26 and Var
(

1
bi

)
= 431, so if r = a, E(β̂) = 0.0015

and the expected estimate is about two percent of the true b. More generally, with
zi ∼ N(m, v), then b = E(bi) = em+v/2 and E( 1

bi
) = e−m+v/2 and Var

(
1
bi

)
=

(ev − 1) e−2m+v, so the proportional bias is given by

E(β̂)− b
b

= em−
3
2
v − 1
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which for m = −3 is always between 95 and 100 percent (i.e. the estimate will
never be more than 5 percent of b).

In reality, there is unobserved heterogeneity in bi, ai, and ri, and these param-
eters are not independently distributed, so there is no guarantee that unobserved
heterogeneity in ri will not exacerbate bias. It seems likely that bi and ai are pos-
itively correlated (those who start with higher skill also learn faster), but in the
presence of various kinds of measurement error, it is likely that many estimates
of bi and ai would be negatively correlated. In a richer model, it might also make
sense that those with higher bi have lower ri (because they may live longer, exhibit
lower risk of default on loans, etc.).
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